血管生成
微气泡
分子成像
体内
激酶插入结构域受体
病理
新生血管
医学
血管内皮生长因子
癌症研究
粘附
超声波
化学
血管内皮生长因子A
生物
放射科
血管内皮生长因子受体
生物技术
有机化学
作者
Jianjun Wang,Bin Qin,Xucai Chen,William R. Wagner,Flordeliza S. Villanueva
标识
DOI:10.1021/acs.molpharmaceut.6b01033
摘要
Imaging of angiogenesis receptors could provide a sensitive and clinically useful method for detecting neovascularization such as occurs in malignant tumors, and responses to antiangiogenic therapies for such tumors. We tested the hypothesis that microbubbles (MB) tagged with human VEGF121 (MBVEGF) bind to the kinase insert domain receptor (KDR) in vitro and angiogenic endothelium in vivo, and that this specific binding can be imaged on a clinical ultrasound system. In this work, targeted adhesion of MBVEGF was evaluated in vitro using a parallel plate flow system containing adsorbed recombinant human KDR. There was more adhesion of MBVEGF to KDR-coated plates when the amount of VEGF121 on each MB or KDR density on the plate was increased. MBVEGF adhesion to KDR-coated plates decreased with increasing wall shear rate. On intravital microscopic imaging of bFGF-stimulated rat cremaster muscle, there was greater microvascular adhesion of MBVEGF compared to that of isotype IgG-conjugated control MB (MBCTL). To determine if MBVEGF could be used to ultrasonically image angiogenesis, ultrasound imaging was performed in mice bearing squamous cell carcinoma after intravenous injection of MBVEGF. Ultrasound videointensity enhancement in tumor was significantly higher for MBVEGF (17.3 ± 9.7 dB) compared to MBCTL (3.8 ± 4.4 dB, n = 6, p < 0.05). This work demonstrates the feasibility of targeted ultrasound imaging of an angiogenic marker using MBVEGF. This approach offers a noninvasive bedside method for detecting tumor angiogenesis and could be extended to other applications such as molecular monitoring of therapeutic angiogenesis or antiangiogenic therapies in cardiovascular disease or cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI