直接甲醇燃料电池
人工神经网络
计算机科学
控制器(灌溉)
电池(电)
电压
甲醇燃料
能源管理
热的
控制工程
汽车工程
控制理论(社会学)
燃料电池
能量(信号处理)
控制(管理)
人工智能
工程类
功率(物理)
化学工程
电气工程
化学
生物
电极
数学
量子力学
阳极
气象学
物理化学
农学
物理
统计
作者
Kunhao Tang,Sanhua Zhang,Youlong Wu
出处
期刊:Thermal Science
[Vinča Institute of Nuclear Sciences]
日期:2021-01-01
卷期号:25 (4 Part B): 2933-2939
被引量:2
摘要
Aiming at the direct methanol fuel cell system is too complicated, difficult to model, and the thermal management system needs to be optimized. The article attempts to bypass the internal complexity of direct methanol fuel cell, based on experimental data, use neural networks to approximate arbitrarily complex non-linear functions ability to apply neural network identification methods to direct methanol fuel cell, a highly non-linear thermal management system optimization modelling. The paper uses 1000 sets of battery voltage and current density experimental data as training samples and uses an improved back propagation neural network to establish a battery voltage-current density dynamic response model at different temperatures. The simulation results show that this method is feasible, and the established model has high accuracy. It makes it possible to design the real-time controller of the direct methanol fuel cell and optimize the thermal energy manage?ment system?s efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI