Performance improvement of InGaN LEDs by using strain compensated last quantum barrier and electron blocking layer

电压降 材料科学 光电子学 超晶格 发光二极管 电子 波段图 二极管 带隙 量子效率 量子阱 光学 功率(物理) 物理 激光器 量子力学 分压器
作者
Chuanyu Jia,Chenguang He,Qi Wang,Zhizhong Chen
出处
期刊:Optik [Elsevier BV]
卷期号:248: 168216-168216 被引量:7
标识
DOI:10.1016/j.ijleo.2021.168216
摘要

Abstract The influence of u-AlGaN/InGaN superlattices (SLs) last quantum barrier (LQB) and p-AlGaN/InGaN SLs electron blocking layer (EBL) on the performance of InGaN light-emitting diodes (LEDs) are analyzed experimentally and theoretically. Research results indicated that LED C with u-AlGaN/InGaN SLs LQB and p-AlGaN/InGaN SLs EBL exhibit the highest output power among the three groups of LED samples. At 200 mA, the output power of LED C is enhanced by 27.5% as compared with that of reference LED A with u-GaN LQB and p-AlGaN/GaN SLs EBL. The efficiency droop of LED C has also been suppressed effectively. At 200 mA, the efficiency droop of LED C was 28.5%, which was smaller than that of LED A 34%. By analyzing the distribution of electron/hole concentration in multiple quantum wells, it is indicated that the leakage of electrons from the active layer can be effectively reduced and the injection efficiency of holes into the active layer can be dramatically enhanced by using strain compensated AlGaN/InGaN SLs LQB and EBL. The reason is that the potential energy barriers for electrons and holes could be effectively regulated by using the strain compensated LQB and EBL, which is consistent with simulation results of energy band diagram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mason完成签到,获得积分10
1秒前
Owen应助JMrider采纳,获得10
2秒前
莘莘完成签到 ,获得积分10
2秒前
星辰大海应助raoxray采纳,获得10
2秒前
Orange应助zhangcdoctor采纳,获得10
4秒前
一只羊发布了新的文献求助10
5秒前
博修发布了新的文献求助10
5秒前
genesquared完成签到,获得积分10
6秒前
渊思发布了新的文献求助10
6秒前
星辰大海应助linmo采纳,获得10
6秒前
YamDaamCaa应助qikkk采纳,获得30
7秒前
研友_LaNYNn发布了新的文献求助10
7秒前
Hello应助啦啦啦啦采纳,获得10
7秒前
莘莘发布了新的文献求助10
8秒前
BingyuDu完成签到 ,获得积分20
8秒前
星辰大海应助咕噜坚果采纳,获得10
10秒前
11秒前
zzzkyt发布了新的文献求助10
13秒前
汉堡包应助科研爱好者采纳,获得10
13秒前
13秒前
14秒前
15秒前
16秒前
饼藏发布了新的文献求助80
17秒前
领导范儿应助zzzkyt采纳,获得10
17秒前
17秒前
18秒前
打打应助刘刘宇航采纳,获得10
18秒前
19秒前
谦让的牛排完成签到 ,获得积分10
20秒前
20秒前
耶耶耶发布了新的文献求助10
20秒前
21秒前
linmo发布了新的文献求助10
21秒前
隐形曼青应助xuaotian采纳,获得30
22秒前
334发布了新的文献求助10
22秒前
北岭雪兮发布了新的文献求助10
23秒前
刘刘宇航完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578