Leaf area index remote sensing based on Deep Belief Network supported by simulation data

计算机科学 归一化差异植被指数 人工神经网络 人工智能
作者
Lin Sun,Weiyan Wang,Jia Chen,Xirong Liu
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:42 (20): 7637-7661 被引量:3
标识
DOI:10.1080/01431161.2021.1942584
摘要

Leaf area index (LAI) is a key variable in the exchange of substance and energy between the surface and the atmosphere. Remote sensing inversion is the most effective method used to obtain the LAI in a large area. However, owing to the complexity of the spatial structure of vegetation, it is difficult to obtain LAI measurements with high stability and precision. One of the main reasons for this is the lack of information mining ability provided by remote sensing images. To fully utilize the information provided by these images, deep learning technology, with strong self-learning ability and information mining ability, was proposed in this study to retrieve the LAI. The accuracy and stability of deep learning technology largely depends on the quality, quantity, and representativeness of the samples. Given the present difficulties in producing enough high-quality samples from land surface measurements, this paper proposes the use of a radiative transfer model to simulate samples to realize a remote sensing inversion of the LAI. The PROSAIL model is used to simulate the training samples for LAI inversion. A Deep Belief Network (DBN) was used for LAI inversion from MODIS (Moderate-Resolution Imaging Spectroradiometer) data with seven spectral bands, and the estimated LAI was compared with the current MODIS LAI product (MOD15A2H), on the basis of validation by ground-measured LAI. The inversion results (Root Mean Square Error RMSE and Pearson’s correlation coefficient r) obtained by the DBN algorithm (RMSE = 0.8988, r = 0.7188) of this study and GLASS (Global LAnd Surface Satellite) algorithm (RMSE = 0.7111, r = 0.7995) showed a similar performance, and they are superior to the MODIS LAI product (RMSE = 1.0595, r = 0.6613).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞完成签到,获得积分10
刚刚
lqh0211发布了新的文献求助10
刚刚
seven完成签到,获得积分10
1秒前
372721759完成签到,获得积分10
1秒前
辛羽完成签到,获得积分10
2秒前
SYLH应助shengpingyang采纳,获得10
2秒前
2秒前
朴实如冰发布了新的文献求助10
2秒前
桐桐应助yaya采纳,获得10
3秒前
3秒前
jjj发布了新的文献求助10
3秒前
小飞发布了新的文献求助10
4秒前
沉默凌雪发布了新的文献求助30
4秒前
Orange应助zxj采纳,获得10
4秒前
Furmark_14完成签到,获得积分10
5秒前
5秒前
自由之柔发布了新的文献求助10
6秒前
树阴照水发布了新的文献求助10
7秒前
7秒前
偏执发布了新的文献求助10
7秒前
酷波er应助liugm采纳,获得10
8秒前
9秒前
小马甲应助背后海亦采纳,获得10
9秒前
cldg发布了新的文献求助10
10秒前
情怀应助直率的花生采纳,获得10
11秒前
陈JY完成签到 ,获得积分10
11秒前
FashionBoy应助跬步一积采纳,获得30
11秒前
xiaohai完成签到,获得积分20
11秒前
YIWENNN发布了新的文献求助10
11秒前
朴实如冰完成签到,获得积分10
13秒前
灿烂sunfly完成签到,获得积分10
14秒前
jjj完成签到,获得积分10
15秒前
17秒前
18秒前
图图应助shengpingyang采纳,获得30
19秒前
19秒前
机灵的煎蛋完成签到,获得积分10
21秒前
bkagyin应助WYF采纳,获得10
21秒前
22秒前
zzzzzz发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427