Detecting Risk Gene and Pathogenic Brain Region in EMCI Using a Novel GERF Algorithm Based on Brain Imaging and Genetic Data

神经影像学 功能磁共振成像 计算机科学 人工智能 遗传算法 磁共振成像 模式识别(心理学) 机器学习 算法 医学 神经科学 生物 放射科
作者
Xia-an Bi,Wenyan Zhou,Lou Li,Zhaoxu Xing
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 3019-3028 被引量:22
标识
DOI:10.1109/jbhi.2021.3067798
摘要

Fusion analysis of disease-related multi-modal data is becoming increasingly important to illuminate the pathogenesis of complex brain diseases. However, owing to the small amount and high dimension of multi-modal data, current machine learning methods do not fully achieve the high veracity and reliability of fusion feature selection. In this paper, we propose a genetic-evolutionary random forest (GERF) algorithm to discover the risk genes and disease-related brain regions of early mild cognitive impairment (EMCI) based on the genetic data and resting-state functional magnetic resonance imaging (rs-fMRI) data. Classical correlation analysis method is used to explore the association between brain regions and genes, and fusion features are constructed. The genetic-evolutionary idea is introduced to enhance the classification performance, and to extract the optimal features effectively. The proposed GERF algorithm is evaluated by the public Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the results show that the algorithm achieves satisfactory classification accuracy in small sample learning. Moreover, we compare the GERF algorithm with other methods to prove its superiority. Furthermore, we propose the overall framework of detecting pathogenic factors, which can be accurately and efficiently applied to the multi-modal data analysis of EMCI and be able to extend to other diseases. This work provides a novel insight for early diagnosis and clinicopathologic analysis of EMCI, which facilitates clinical medicine to control further deterioration of diseases and is good for the accurate electric shock using transcranial magnetic stimulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限草丛完成签到,获得积分10
刚刚
star009完成签到,获得积分10
1秒前
卷大喵完成签到,获得积分10
1秒前
不正二大完成签到,获得积分10
1秒前
wsy完成签到,获得积分10
1秒前
1秒前
Yuan完成签到 ,获得积分10
2秒前
酷炫的背包完成签到,获得积分10
2秒前
Zoe完成签到,获得积分20
2秒前
风趣尔冬发布了新的文献求助10
2秒前
骅暘发布了新的文献求助10
3秒前
暖羊羊Y完成签到 ,获得积分10
3秒前
3秒前
快乐滑板应助lei采纳,获得10
3秒前
Luantyi发布了新的文献求助80
4秒前
4秒前
余哈哈完成签到,获得积分10
4秒前
拾忆完成签到,获得积分10
4秒前
自由路完成签到,获得积分10
4秒前
CCL完成签到,获得积分10
5秒前
冷静青文完成签到,获得积分20
5秒前
adjuster完成签到,获得积分10
5秒前
SciGPT应助wfy1227采纳,获得10
5秒前
木子青山完成签到,获得积分10
5秒前
冰淇淋完成签到,获得积分10
6秒前
6秒前
慢慢地漫漫完成签到,获得积分10
6秒前
ljy发布了新的文献求助10
7秒前
痴情的翠桃完成签到,获得积分10
8秒前
ding应助keytolove采纳,获得10
8秒前
LV完成签到 ,获得积分10
8秒前
小雷要学习完成签到,获得积分10
8秒前
Lee完成签到 ,获得积分10
8秒前
汉桑波欸完成签到,获得积分10
9秒前
共享精神应助Annora采纳,获得10
9秒前
沉静的画板完成签到 ,获得积分10
9秒前
RUSeries完成签到,获得积分10
9秒前
Zzddslj完成签到 ,获得积分10
9秒前
松松包完成签到,获得积分10
9秒前
jin1233完成签到 ,获得积分10
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471793
求助须知:如何正确求助?哪些是违规求助? 3064675
关于积分的说明 9089704
捐赠科研通 2755407
什么是DOI,文献DOI怎么找? 1512031
邀请新用户注册赠送积分活动 698629
科研通“疑难数据库(出版商)”最低求助积分说明 698517