Detecting Risk Gene and Pathogenic Brain Region in EMCI Using a Novel GERF Algorithm Based on Brain Imaging and Genetic Data

神经影像学 功能磁共振成像 计算机科学 人工智能 遗传算法 磁共振成像 模式识别(心理学) 机器学习 算法 医学 神经科学 生物 放射科
作者
Xia-an Bi,Wenyan Zhou,Lou Li,Zhaoxu Xing
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 3019-3028 被引量:22
标识
DOI:10.1109/jbhi.2021.3067798
摘要

Fusion analysis of disease-related multi-modal data is becoming increasingly important to illuminate the pathogenesis of complex brain diseases. However, owing to the small amount and high dimension of multi-modal data, current machine learning methods do not fully achieve the high veracity and reliability of fusion feature selection. In this paper, we propose a genetic-evolutionary random forest (GERF) algorithm to discover the risk genes and disease-related brain regions of early mild cognitive impairment (EMCI) based on the genetic data and resting-state functional magnetic resonance imaging (rs-fMRI) data. Classical correlation analysis method is used to explore the association between brain regions and genes, and fusion features are constructed. The genetic-evolutionary idea is introduced to enhance the classification performance, and to extract the optimal features effectively. The proposed GERF algorithm is evaluated by the public Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the results show that the algorithm achieves satisfactory classification accuracy in small sample learning. Moreover, we compare the GERF algorithm with other methods to prove its superiority. Furthermore, we propose the overall framework of detecting pathogenic factors, which can be accurately and efficiently applied to the multi-modal data analysis of EMCI and be able to extend to other diseases. This work provides a novel insight for early diagnosis and clinicopathologic analysis of EMCI, which facilitates clinical medicine to control further deterioration of diseases and is good for the accurate electric shock using transcranial magnetic stimulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lidianji122完成签到,获得积分10
刚刚
wankai发布了新的文献求助10
1秒前
完美世界应助?。?采纳,获得10
1秒前
2秒前
zzz完成签到,获得积分10
2秒前
思源应助可达鸭采纳,获得10
2秒前
ZgnomeshghT发布了新的文献求助10
3秒前
tododoto发布了新的文献求助10
4秒前
xx完成签到,获得积分20
4秒前
哈哈哈完成签到,获得积分20
4秒前
happy完成签到,获得积分10
5秒前
哒哒哒完成签到,获得积分10
6秒前
吴吴发布了新的文献求助10
6秒前
共享精神应助过儿采纳,获得10
6秒前
6秒前
柠檬发布了新的文献求助10
6秒前
CodeCraft应助wankai采纳,获得10
6秒前
小蘑菇应助zmy采纳,获得10
7秒前
7秒前
8秒前
凯蒂完成签到,获得积分10
9秒前
大熊猫完成签到,获得积分10
11秒前
def完成签到,获得积分20
12秒前
我想放假发布了新的文献求助10
12秒前
刘四毛发布了新的文献求助10
12秒前
科研通AI5应助飞哥采纳,获得10
12秒前
李微完成签到 ,获得积分10
13秒前
橘子完成签到,获得积分10
13秒前
自由凌丝完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
Deng完成签到,获得积分10
17秒前
阳光咸鱼关注了科研通微信公众号
17秒前
Qiu完成签到,获得积分10
17秒前
17秒前
可达鸭发布了新的文献求助10
18秒前
18秒前
finoa完成签到,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734777
求助须知:如何正确求助?哪些是违规求助? 3278715
关于积分的说明 10010876
捐赠科研通 2995383
什么是DOI,文献DOI怎么找? 1643405
邀请新用户注册赠送积分活动 781153
科研通“疑难数据库(出版商)”最低求助积分说明 749285