生物
精子
顶体
鞭毛
细胞生物学
精子细胞
顶体反应
表型
遗传学
基因
精子活力
作者
Xiang Fang,Yaser Gamallat,Zhiheng Chen,Hanran Mai,Pei Zhou,Chuanbo Sun,Xiaoliang Li,Hong Li,Shuxin Zheng,Caihua Liao,Miaomiao Yang,Li Y,Zeyu Yang,Caiqi Ma,Dingding Han,Liandong Zuo,Wenming Xu,Hao Hu,Ling Sun,Na Li
出处
期刊:Development
[The Company of Biologists]
日期:2021-06-01
卷期号:148 (11)
被引量:19
摘要
ABSTRACT Loss-of-function mutations in multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes lead to decreased sperm motility and impaired male fertility. As an MMAF gene, the function of fibrous sheath-interacting protein 2 (FSIP2) remains largely unknown. In this work, we identified a homozygous truncating mutation of FSIP2 in an infertile patient. Accordingly, we constructed a knock-in (KI) mouse model with this mutation. In parallel, we established an Fsip2 overexpression (OE) mouse model. Remarkably, KI mice presented with the typical MMAF phenotype, whereas OE mice showed no gross anomaly except for sperm tails with increased length. Single-cell RNA sequencing of the testes uncovered altered expression of genes related to sperm flagellum, acrosomal vesicle and spermatid development. We confirmed the expression of Fsip2 at the acrosome and the physical interaction of this gene with Acrv1, an acrosomal marker. Proteomic analysis of the testes revealed changes in proteins sited at the fibrous sheath, mitochondrial sheath and acrosomal vesicle. We also pinpointed the crucial motifs of Fsip2 that are evolutionarily conserved in species with internal fertilization. Thus, this work reveals the dosage-dependent roles of Fsip2 in sperm tail and acrosome formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI