A Comparison of Epidemiological Characteristics of Central Nervous System Tumours in China and Globally from 1990 to 2019

医学 流行病学 入射(几何) 人口学 中国 队列 队列研究 疾病负担 环境卫生 人口 内科学 地理 物理 考古 社会学 光学
作者
Bo Zhu,Xiaomei Wu,Haozhe Piao,Shuang Xu,Bing Yao
出处
期刊:Neuroepidemiology [Karger Publishers]
卷期号:55 (6): 460-472 被引量:6
标识
DOI:10.1159/000519463
摘要

Despite their great disease burden, there have been few studies on the epidemiology of central nervous system tumours (CNSTs) in China. We used the latest data updated by GBD to analyse the trends of incidence, mortality, and disability-adjusted life years (DALYs) for CNSTs in China versus globally.Epidemiological data on CNSTs were extracted from GBD 2019. We used Joinpoint regression analysis to calculate the magnitude and direction of the trends and the age-period-cohort method to analyse the age, period, and cohort effects of the trend.From 1990 to 2019, the 106.52% increase in Chinese incident cases was higher than the global increase (94.35%). The 67.32% increase in cancer deaths and 16.03% increase in DALYs were lower than the global increases (cancer death: 76.36%; DALYs: 40.06%). The age-standardized incidence rates (ASIRs) in China were higher than the global ASIRs, and the increase in China was higher than that globally. Although the age-standardized mortality rates and age-standardized DALY rates in China were higher, their increases in China were less than those globally. Both in China and globally, the number and incidence, mortality, and DALYs by age group showed a bimodal distribution (younger than 5 years and older), and the peak in the older age group showed a backwards trend. The proportion of incident cases, cancer deaths, and DALYs also increased in the older age group. In the age-period-cohort model, the local drifts in the older age group were above zero.The burden of CNSTs is very serious in China, and we should pay attention to the key populations, early diagnosis technology, improvements in medical technology, and ways to reduce medical costs. We believe our results could help policymakers allocate resources efficiently to reduce the burden of CNSTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹤鸣发布了新的文献求助30
刚刚
ding应助整齐小松鼠采纳,获得30
刚刚
wanci应助好吃采纳,获得10
1秒前
Rondab应助稳重水卉采纳,获得10
1秒前
天天快乐应助fengliurencai采纳,获得10
2秒前
彭于彦祖应助mrx采纳,获得20
2秒前
3秒前
bkagyin应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
hnu301完成签到,获得积分10
6秒前
英姑应助冷酷鱼采纳,获得10
7秒前
7秒前
屿落完成签到,获得积分10
7秒前
昏睡的蟠桃应助zzz采纳,获得100
7秒前
量子星尘发布了新的文献求助10
9秒前
恋雅颖月应助幸福大白采纳,获得10
9秒前
wh完成签到,获得积分10
9秒前
余淮完成签到,获得积分10
10秒前
平淡的初翠完成签到,获得积分10
10秒前
快乐一江发布了新的文献求助10
11秒前
邱型程应助屿落采纳,获得20
12秒前
鹤鸣完成签到,获得积分10
15秒前
15秒前
15秒前
17秒前
天真的高山完成签到,获得积分10
18秒前
善良海云完成签到,获得积分10
20秒前
ANG发布了新的文献求助10
20秒前
从容梦旋完成签到,获得积分10
22秒前
23秒前
酷波er应助liuyunhao7207采纳,获得10
23秒前
人生如梦应助健忘跳跳糖采纳,获得10
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174