A Comparison of Epidemiological Characteristics of Central Nervous System Tumours in China and Globally from 1990 to 2019

医学 流行病学 入射(几何) 人口学 中国 队列 队列研究 疾病负担 环境卫生 人口 内科学 地理 物理 考古 社会学 光学
作者
Bo Zhu,Xiaomei Wu,Haozhe Piao,Shuang Xu,Bing Yao
出处
期刊:Neuroepidemiology [S. Karger AG]
卷期号:55 (6): 460-472 被引量:6
标识
DOI:10.1159/000519463
摘要

Despite their great disease burden, there have been few studies on the epidemiology of central nervous system tumours (CNSTs) in China. We used the latest data updated by GBD to analyse the trends of incidence, mortality, and disability-adjusted life years (DALYs) for CNSTs in China versus globally.Epidemiological data on CNSTs were extracted from GBD 2019. We used Joinpoint regression analysis to calculate the magnitude and direction of the trends and the age-period-cohort method to analyse the age, period, and cohort effects of the trend.From 1990 to 2019, the 106.52% increase in Chinese incident cases was higher than the global increase (94.35%). The 67.32% increase in cancer deaths and 16.03% increase in DALYs were lower than the global increases (cancer death: 76.36%; DALYs: 40.06%). The age-standardized incidence rates (ASIRs) in China were higher than the global ASIRs, and the increase in China was higher than that globally. Although the age-standardized mortality rates and age-standardized DALY rates in China were higher, their increases in China were less than those globally. Both in China and globally, the number and incidence, mortality, and DALYs by age group showed a bimodal distribution (younger than 5 years and older), and the peak in the older age group showed a backwards trend. The proportion of incident cases, cancer deaths, and DALYs also increased in the older age group. In the age-period-cohort model, the local drifts in the older age group were above zero.The burden of CNSTs is very serious in China, and we should pay attention to the key populations, early diagnosis technology, improvements in medical technology, and ways to reduce medical costs. We believe our results could help policymakers allocate resources efficiently to reduce the burden of CNSTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
善学以致用应助自由迎曼采纳,获得10
2秒前
英姑应助灵巧的珍采纳,获得10
2秒前
2秒前
无花果应助run采纳,获得10
2秒前
kai发布了新的文献求助10
2秒前
别当真发布了新的文献求助80
3秒前
zy完成签到,获得积分10
3秒前
3秒前
LZH发布了新的文献求助10
4秒前
manman完成签到 ,获得积分10
4秒前
5秒前
lilili应助mmdnp采纳,获得10
5秒前
小马甲应助乐观的语山采纳,获得10
5秒前
6秒前
时年完成签到,获得积分10
6秒前
游子轩完成签到,获得积分10
6秒前
doctorgeng发布了新的文献求助10
7秒前
奶茶电竞精神完成签到,获得积分10
9秒前
共享精神应助长学采纳,获得10
9秒前
10秒前
科研通AI6应助liao_duoduo采纳,获得10
10秒前
星辰大海应助lqiqivv采纳,获得30
10秒前
11秒前
SciGPT应助你好采纳,获得10
11秒前
高斯发布了新的文献求助10
11秒前
11秒前
Orange应助憨憨的小于采纳,获得10
12秒前
努力搞科研完成签到,获得积分10
13秒前
诸青梦完成签到 ,获得积分10
13秒前
13秒前
kjlee发布了新的文献求助10
14秒前
蓝天发布了新的文献求助10
16秒前
伶俐的雅寒完成签到,获得积分10
16秒前
和谐天川发布了新的文献求助10
16秒前
17秒前
漂亮不正完成签到 ,获得积分10
17秒前
优雅沛文完成签到 ,获得积分10
18秒前
Puffkten发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513