A Comparison of Epidemiological Characteristics of Central Nervous System Tumours in China and Globally from 1990 to 2019

医学 流行病学 入射(几何) 人口学 中国 队列 队列研究 疾病负担 环境卫生 人口 内科学 地理 物理 考古 社会学 光学
作者
Bo Zhu,Xiaomei Wu,Haozhe Piao,Shuang Xu,Bing Yao
出处
期刊:Neuroepidemiology [Karger Publishers]
卷期号:55 (6): 460-472 被引量:6
标识
DOI:10.1159/000519463
摘要

Despite their great disease burden, there have been few studies on the epidemiology of central nervous system tumours (CNSTs) in China. We used the latest data updated by GBD to analyse the trends of incidence, mortality, and disability-adjusted life years (DALYs) for CNSTs in China versus globally.Epidemiological data on CNSTs were extracted from GBD 2019. We used Joinpoint regression analysis to calculate the magnitude and direction of the trends and the age-period-cohort method to analyse the age, period, and cohort effects of the trend.From 1990 to 2019, the 106.52% increase in Chinese incident cases was higher than the global increase (94.35%). The 67.32% increase in cancer deaths and 16.03% increase in DALYs were lower than the global increases (cancer death: 76.36%; DALYs: 40.06%). The age-standardized incidence rates (ASIRs) in China were higher than the global ASIRs, and the increase in China was higher than that globally. Although the age-standardized mortality rates and age-standardized DALY rates in China were higher, their increases in China were less than those globally. Both in China and globally, the number and incidence, mortality, and DALYs by age group showed a bimodal distribution (younger than 5 years and older), and the peak in the older age group showed a backwards trend. The proportion of incident cases, cancer deaths, and DALYs also increased in the older age group. In the age-period-cohort model, the local drifts in the older age group were above zero.The burden of CNSTs is very serious in China, and we should pay attention to the key populations, early diagnosis technology, improvements in medical technology, and ways to reduce medical costs. We believe our results could help policymakers allocate resources efficiently to reduce the burden of CNSTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Willow完成签到,获得积分10
2秒前
研研研完成签到,获得积分10
3秒前
大橙子发布了新的文献求助10
5秒前
dejiangcj完成签到 ,获得积分10
6秒前
无味完成签到,获得积分10
7秒前
大气的尔蓝完成签到,获得积分10
8秒前
科研通AI5应助普鲁卡因采纳,获得10
9秒前
略略略完成签到 ,获得积分10
11秒前
zqlxueli完成签到 ,获得积分10
15秒前
无语的断缘完成签到,获得积分10
17秒前
hdx完成签到 ,获得积分10
18秒前
健壮的涑完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
23秒前
普鲁卡因发布了新的文献求助10
23秒前
高大绝义完成签到,获得积分10
25秒前
27秒前
黄超超发布了新的文献求助10
28秒前
ZEcholy完成签到 ,获得积分20
28秒前
大橙子发布了新的文献求助10
29秒前
小幸运完成签到,获得积分10
31秒前
淡然一德完成签到,获得积分10
34秒前
咖啡豆完成签到 ,获得积分10
35秒前
36秒前
龙猫爱看书完成签到,获得积分10
36秒前
you完成签到,获得积分10
37秒前
黄超超完成签到,获得积分10
39秒前
玄音完成签到,获得积分10
40秒前
天将明完成签到 ,获得积分10
41秒前
咖啡豆发布了新的文献求助10
41秒前
普鲁卡因发布了新的文献求助10
44秒前
海孩子完成签到,获得积分10
44秒前
Ye完成签到,获得积分10
48秒前
陆浩学化学完成签到,获得积分10
49秒前
Slemon完成签到,获得积分10
50秒前
52秒前
大个应助普鲁卡因采纳,获得10
55秒前
咖啡豆发布了新的文献求助10
56秒前
意志所向完成签到,获得积分10
56秒前
《子非鱼》完成签到,获得积分10
57秒前
缓慢的甜瓜完成签到,获得积分10
59秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022