3D printing technologies for electrochemical energy storage

材料科学 电化学储能 3D打印 储能 电化学能量转换 纳米技术 电化学 工艺工程 电极 工程物理 超级电容器 冶金 工程类 功率(物理) 物理化学 化学 物理 量子力学
作者
Feng Zhang,Min Wei,Vilayanur Viswanathan,Benjamin Swart,Yuyan Shao,Gang Wu,Chi Zhou
出处
期刊:Nano Energy [Elsevier]
卷期号:40: 418-431 被引量:406
标识
DOI:10.1016/j.nanoen.2017.08.037
摘要

Fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from nano to macro for EES applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
51完成签到,获得积分10
刚刚
2秒前
仁爱的乐枫完成签到,获得积分10
4秒前
4秒前
罗百事发布了新的文献求助10
5秒前
所所应助wasttt采纳,获得10
5秒前
Guhuiying应助咕噜咕噜采纳,获得10
5秒前
7秒前
zhangpeipei完成签到,获得积分10
7秒前
无限安蕾完成签到,获得积分10
8秒前
8秒前
彼方尚有荣光在完成签到 ,获得积分10
10秒前
10秒前
11秒前
zhou完成签到,获得积分20
12秒前
胡澍发布了新的文献求助10
12秒前
Terahertz完成签到 ,获得积分10
13秒前
靓丽念薇发布了新的文献求助10
15秒前
ycc完成签到,获得积分10
15秒前
领导范儿应助夜雨声烦采纳,获得10
15秒前
pllll发布了新的文献求助10
17秒前
huangJP发布了新的文献求助10
17秒前
18秒前
zhengguibin完成签到 ,获得积分10
18秒前
mhl11应助zhou采纳,获得10
19秒前
21秒前
Wang完成签到 ,获得积分10
21秒前
情怀应助希希采纳,获得10
23秒前
23秒前
杨破玉发布了新的文献求助10
25秒前
夜雨声烦发布了新的文献求助10
29秒前
30秒前
谢灵竹完成签到,获得积分10
32秒前
吴彦鸿发布了新的文献求助10
34秒前
36秒前
张鼎发布了新的文献求助10
36秒前
夜雨声烦完成签到,获得积分10
38秒前
40秒前
cocolu应助科研通管家采纳,获得10
40秒前
JoeJ应助科研通管家采纳,获得10
40秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325350
求助须知:如何正确求助?哪些是违规求助? 2956011
关于积分的说明 8578775
捐赠科研通 2633929
什么是DOI,文献DOI怎么找? 1441572
科研通“疑难数据库(出版商)”最低求助积分说明 667885
邀请新用户注册赠送积分活动 654623