Adaptive DRL-based Virtual Machine Consolidation in Energy-Efficient Cloud Data Center

计算机科学 虚拟机 云计算 数据中心 能源消耗 服务水平协议 实时迁移 工作量 分布式计算 虚拟化 操作系统 工程类 电气工程
作者
Jing Zeng,Ding Ding,Xuan Kai Kang,Huamao Xie,Qian Yin
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:24
标识
DOI:10.1109/tpds.2022.3147851
摘要

The dramatic increasing of data and demands for computing capabilities may result in excessive use of resources in cloud data centers, which not only causes the raising of energy consumption, but also leads to the violation of Service Level Agreement (SLA). Dynamic consolidation of virtual machines (VMs) is proven to be an efficient way to tackle this issue. In this paper, we present an Adaptive Deep Reinforcement Learning (DRL)-based Virtual Machine Consolidation (ADVMC) framework for energy-efficient cloud data centers. ADVMC has two phases. In the first phase, Influence Coefficient is introduced to measure the impact of a VM on producing host overload, and a dynamic Influence Coefficient-based VM selection algorithm (ICVMS) is proposed to preferentially choose those VMs with the greatest impact for migration in order to remove the excessive workloads of the overloaded host quickly and accurately. In the second phase, a Prediction Aware DRL-based VM placement method (PADRL) is further proposed to automatically find suitable hosts for VMs to be migrated, in which a state prediction network is designed based on LSTM to provide DRL-based model more reasonable environment states so as to accelerate the convergence of DRL. Simulation experiments on the real-world workload provided by Google Cluster Trace have shown that our ADVMC approach can largely cut down system energy consumption and reduce SLA violation of users as compared to many other VM consolidation policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自律洋宝宝完成签到,获得积分10
刚刚
kkyhfut发布了新的文献求助10
刚刚
今后应助GQ采纳,获得10
1秒前
1秒前
科研通AI2S应助倩倩采纳,获得10
2秒前
Lin发布了新的文献求助10
2秒前
pluto应助南宫沂采纳,获得60
3秒前
kiyo完成签到,获得积分10
3秒前
忧郁依霜完成签到,获得积分10
4秒前
luan完成签到,获得积分10
4秒前
Shen完成签到,获得积分20
4秒前
5秒前
6秒前
山月鹿完成签到,获得积分10
7秒前
木子完成签到,获得积分20
7秒前
上官若男应助钱多多采纳,获得10
8秒前
8秒前
小宋应助科研达人采纳,获得10
8秒前
HP完成签到,获得积分10
8秒前
9秒前
关关完成签到 ,获得积分10
9秒前
搜集达人应助橙子采纳,获得10
10秒前
机智的觅风完成签到,获得积分10
10秒前
史莱莱莱姆完成签到,获得积分10
10秒前
某丞发布了新的文献求助10
10秒前
10秒前
搜集达人应助中中采纳,获得10
11秒前
爆米花应助怕孤单的思雁采纳,获得10
11秒前
11秒前
11秒前
甜崽小肉丸完成签到,获得积分10
12秒前
搜集达人应助Seoalissn采纳,获得10
12秒前
12秒前
科研通AI5应助Xenia采纳,获得10
13秒前
13秒前
安静乐瑶发布了新的文献求助30
14秒前
14秒前
14秒前
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320