亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scale-adaptive super-feature based MetricUNet for brain tumor segmentation

体素 分割 人工智能 计算机科学 特征(语言学) 背景(考古学) 公制(单位) 模式识别(心理学) 计算 像素 图像分割 比例(比率) 脑瘤 计算机视觉 算法 医学 病理 语言学 运营管理 哲学 经济 古生物学 物理 量子力学 生物
作者
Yujian Liu,Jie Du,Chi‐Man Vong,Guanghui Yue,Lei Yi,Yuli Wang,Baiying Lei,Tianfu Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103442-103442 被引量:23
标识
DOI:10.1016/j.bspc.2021.103442
摘要

Accurate segmentation of brain tumors is very essential for brain tumor diagnosis and treatment plans. In general, brain tumor includes WT (whole tumor), TC (tumor core) and ET (enhance tumor), and TC and ET are much more important than WT clinically. However, TC and ET usually contain blurred boundaries, and occupy much fewer pixels than WT. Recently, MetricUNet based on voxel-metric learning is proposed, which considers voxel-level feature relationship in the image to obtain finer segmentation results. However, it may not be applicable in brain tumor segmentation. That is because the scales/sizes of brain tumor greatly vary between images and causing ineffective model training in MetricUNet. Moreover, it has heavy computation for considering voxel-level feature relationship in brain tumor segmentation. In this work, a Scale-adaptive Super-feature based MetricUNet (S2MetricUNet) is proposed and provides two advantages: i) higher accuracy on TC and ET since a novel scale-adaptive metric loss is proposed for learning of more context information about TC and ET while addressing the scale variation between images; ii) significant reduction on computation since a super voxel-level feature is proposed to represent a group of voxel-level features (of the same label) in non-edge regions. The experimental results on public dataset BraTS2019 have demonstrated that the improvement of our method is up to 3.38% on TC and 3.82% on ET in terms Dice. Moreover, the computation of our S2MetricUNet is reduced to about 1/11 of MetricUNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gexzygg应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得30
1秒前
gexzygg应助科研通管家采纳,获得10
1秒前
gexzygg应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
2秒前
3秒前
大方的笑萍完成签到 ,获得积分10
5秒前
WX完成签到 ,获得积分10
17秒前
Xjx6519发布了新的文献求助10
20秒前
31秒前
32秒前
yyck发布了新的文献求助10
35秒前
善良的焦发布了新的文献求助10
35秒前
HYQ完成签到 ,获得积分10
38秒前
新秀微博发布了新的文献求助10
49秒前
hodi完成签到,获得积分10
49秒前
mao完成签到 ,获得积分10
53秒前
善良的焦完成签到,获得积分10
59秒前
新秀微博完成签到,获得积分10
1分钟前
斜阳完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
涵雁完成签到 ,获得积分20
1分钟前
三千世界完成签到,获得积分10
1分钟前
李健应助gaijiaofanv采纳,获得10
1分钟前
尔白完成签到 ,获得积分10
1分钟前
1分钟前
gaijiaofanv发布了新的文献求助10
1分钟前
烤鱼片完成签到 ,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得20
2分钟前
雨霧雲完成签到,获得积分10
2分钟前
龍Ryu完成签到,获得积分10
2分钟前
aiai发布了新的文献求助10
2分钟前
2分钟前
tepqi发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558432
求助须知:如何正确求助?哪些是违规求助? 4643483
关于积分的说明 14671107
捐赠科研通 4584781
什么是DOI,文献DOI怎么找? 2515173
邀请新用户注册赠送积分活动 1489225
关于科研通互助平台的介绍 1459827