Scale-adaptive super-feature based MetricUNet for brain tumor segmentation

体素 分割 人工智能 计算机科学 特征(语言学) 背景(考古学) 公制(单位) 模式识别(心理学) 计算 像素 图像分割 比例(比率) 脑瘤 计算机视觉 算法 医学 病理 物理 哲学 古生物学 生物 量子力学 经济 语言学 运营管理
作者
Yujian Liu,Jie Du,Chi‐Man Vong,Guanghui Yue,Lei Yi,Yuli Wang,Baiying Lei,Tianfu Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:73: 103442-103442 被引量:23
标识
DOI:10.1016/j.bspc.2021.103442
摘要

Accurate segmentation of brain tumors is very essential for brain tumor diagnosis and treatment plans. In general, brain tumor includes WT (whole tumor), TC (tumor core) and ET (enhance tumor), and TC and ET are much more important than WT clinically. However, TC and ET usually contain blurred boundaries, and occupy much fewer pixels than WT. Recently, MetricUNet based on voxel-metric learning is proposed, which considers voxel-level feature relationship in the image to obtain finer segmentation results. However, it may not be applicable in brain tumor segmentation. That is because the scales/sizes of brain tumor greatly vary between images and causing ineffective model training in MetricUNet. Moreover, it has heavy computation for considering voxel-level feature relationship in brain tumor segmentation. In this work, a Scale-adaptive Super-feature based MetricUNet (S2MetricUNet) is proposed and provides two advantages: i) higher accuracy on TC and ET since a novel scale-adaptive metric loss is proposed for learning of more context information about TC and ET while addressing the scale variation between images; ii) significant reduction on computation since a super voxel-level feature is proposed to represent a group of voxel-level features (of the same label) in non-edge regions. The experimental results on public dataset BraTS2019 have demonstrated that the improvement of our method is up to 3.38% on TC and 3.82% on ET in terms Dice. Moreover, the computation of our S2MetricUNet is reduced to about 1/11 of MetricUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波bo发布了新的文献求助10
刚刚
党文英发布了新的文献求助10
1秒前
3秒前
wanci应助疯狂的海亦采纳,获得10
4秒前
白马非马发布了新的文献求助10
4秒前
lixingl完成签到,获得积分10
5秒前
6秒前
Augenstern完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
zwc发布了新的文献求助10
7秒前
冬冬完成签到,获得积分20
9秒前
9秒前
yu发布了新的文献求助10
10秒前
852应助甜蜜的阿飞采纳,获得10
10秒前
yar应助lixingl采纳,获得10
10秒前
10秒前
刘先生完成签到,获得积分20
10秒前
10秒前
111发布了新的文献求助10
10秒前
wang发布了新的文献求助10
11秒前
12秒前
小林发布了新的文献求助10
12秒前
嘚嘚完成签到,获得积分10
13秒前
调皮万宝路完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
鳙鱼完成签到 ,获得积分10
15秒前
鞥枊发布了新的文献求助10
15秒前
天天快乐应助航某人采纳,获得10
16秒前
空2完成签到 ,获得积分0
17秒前
joshar发布了新的文献求助10
17秒前
华仔应助潇洒的茗茗采纳,获得10
17秒前
葛泽荣完成签到,获得积分10
18秒前
wendy发布了新的文献求助20
19秒前
Zhang1867完成签到,获得积分10
20秒前
20秒前
英姑应助小太阳采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505933
关于积分的说明 11126932
捐赠科研通 3237900
什么是DOI,文献DOI怎么找? 1789404
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802976