Scale-adaptive super-feature based MetricUNet for brain tumor segmentation

体素 分割 人工智能 计算机科学 特征(语言学) 背景(考古学) 公制(单位) 模式识别(心理学) 计算 像素 图像分割 比例(比率) 脑瘤 计算机视觉 算法 医学 病理 物理 哲学 古生物学 生物 量子力学 经济 语言学 运营管理
作者
Yujian Liu,Jie Du,Chi‐Man Vong,Guanghui Yue,Lei Yi,Yuli Wang,Baiying Lei,Tianfu Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:73: 103442-103442 被引量:23
标识
DOI:10.1016/j.bspc.2021.103442
摘要

Accurate segmentation of brain tumors is very essential for brain tumor diagnosis and treatment plans. In general, brain tumor includes WT (whole tumor), TC (tumor core) and ET (enhance tumor), and TC and ET are much more important than WT clinically. However, TC and ET usually contain blurred boundaries, and occupy much fewer pixels than WT. Recently, MetricUNet based on voxel-metric learning is proposed, which considers voxel-level feature relationship in the image to obtain finer segmentation results. However, it may not be applicable in brain tumor segmentation. That is because the scales/sizes of brain tumor greatly vary between images and causing ineffective model training in MetricUNet. Moreover, it has heavy computation for considering voxel-level feature relationship in brain tumor segmentation. In this work, a Scale-adaptive Super-feature based MetricUNet (S2MetricUNet) is proposed and provides two advantages: i) higher accuracy on TC and ET since a novel scale-adaptive metric loss is proposed for learning of more context information about TC and ET while addressing the scale variation between images; ii) significant reduction on computation since a super voxel-level feature is proposed to represent a group of voxel-level features (of the same label) in non-edge regions. The experimental results on public dataset BraTS2019 have demonstrated that the improvement of our method is up to 3.38% on TC and 3.82% on ET in terms Dice. Moreover, the computation of our S2MetricUNet is reduced to about 1/11 of MetricUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哼哼完成签到,获得积分10
3秒前
英俊的铭应助不喜采纳,获得10
3秒前
4秒前
小卡拉米完成签到,获得积分10
6秒前
顾矜应助哼哼采纳,获得10
6秒前
7秒前
鸭子发布了新的文献求助10
8秒前
Nefelibata完成签到,获得积分10
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
HE应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
李健的小迷弟应助lzz采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
wangyup发布了新的文献求助10
14秒前
悠悠球完成签到,获得积分10
14秒前
宁霸完成签到,获得积分0
14秒前
15秒前
15秒前
CipherSage应助wangyup采纳,获得10
17秒前
hahhhhhh2发布了新的文献求助10
19秒前
19秒前
天气晴朗发布了新的文献求助10
20秒前
香蕉觅云应助周周采纳,获得10
21秒前
小黄发布了新的文献求助10
25秒前
25秒前
26秒前
李爱国应助威武的初曼采纳,获得10
26秒前
传奇3应助干雅柏采纳,获得10
31秒前
wop111发布了新的文献求助10
31秒前
31秒前
鳗鱼飞船发布了新的文献求助10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217513
求助须知:如何正确求助?哪些是违规求助? 4391915
关于积分的说明 13674047
捐赠科研通 4254068
什么是DOI,文献DOI怎么找? 2334230
邀请新用户注册赠送积分活动 1331896
关于科研通互助平台的介绍 1285717