Scale-adaptive super-feature based MetricUNet for brain tumor segmentation

体素 分割 人工智能 计算机科学 特征(语言学) 背景(考古学) 公制(单位) 模式识别(心理学) 计算 像素 图像分割 比例(比率) 脑瘤 计算机视觉 算法 医学 病理 语言学 运营管理 哲学 经济 古生物学 物理 量子力学 生物
作者
Yujian Liu,Jie Du,Chi‐Man Vong,Guanghui Yue,Lei Yi,Yuli Wang,Baiying Lei,Tianfu Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103442-103442 被引量:23
标识
DOI:10.1016/j.bspc.2021.103442
摘要

Accurate segmentation of brain tumors is very essential for brain tumor diagnosis and treatment plans. In general, brain tumor includes WT (whole tumor), TC (tumor core) and ET (enhance tumor), and TC and ET are much more important than WT clinically. However, TC and ET usually contain blurred boundaries, and occupy much fewer pixels than WT. Recently, MetricUNet based on voxel-metric learning is proposed, which considers voxel-level feature relationship in the image to obtain finer segmentation results. However, it may not be applicable in brain tumor segmentation. That is because the scales/sizes of brain tumor greatly vary between images and causing ineffective model training in MetricUNet. Moreover, it has heavy computation for considering voxel-level feature relationship in brain tumor segmentation. In this work, a Scale-adaptive Super-feature based MetricUNet (S2MetricUNet) is proposed and provides two advantages: i) higher accuracy on TC and ET since a novel scale-adaptive metric loss is proposed for learning of more context information about TC and ET while addressing the scale variation between images; ii) significant reduction on computation since a super voxel-level feature is proposed to represent a group of voxel-level features (of the same label) in non-edge regions. The experimental results on public dataset BraTS2019 have demonstrated that the improvement of our method is up to 3.38% on TC and 3.82% on ET in terms Dice. Moreover, the computation of our S2MetricUNet is reduced to about 1/11 of MetricUNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡如水发布了新的文献求助10
1秒前
Orange应助kingsbro-xu采纳,获得10
1秒前
yu完成签到,获得积分10
2秒前
liangliang完成签到,获得积分10
2秒前
两张发布了新的文献求助10
2秒前
fengge发布了新的文献求助10
2秒前
搜集达人应助大意的白凡采纳,获得10
3秒前
wangdanli发布了新的文献求助10
3秒前
3秒前
4秒前
慕青应助鸽子5359采纳,获得10
5秒前
5秒前
完美世界应助RaynorHank采纳,获得10
7秒前
Lu777发布了新的文献求助10
7秒前
领导范儿应助两张采纳,获得10
7秒前
8秒前
刘一一完成签到,获得积分10
8秒前
完美世界应助stebuklas采纳,获得10
9秒前
陈乔乔完成签到 ,获得积分10
10秒前
我爱学习发布了新的文献求助10
10秒前
小太阳发布了新的文献求助10
10秒前
麦辣基米堡完成签到,获得积分20
12秒前
Wst完成签到,获得积分10
13秒前
13秒前
nut给nut的求助进行了留言
14秒前
调皮的蝴蝶完成签到,获得积分10
14秒前
热心市民余先生关注了科研通微信公众号
14秒前
逝水无痕发布了新的文献求助10
15秒前
15秒前
17秒前
Wst发布了新的文献求助10
17秒前
Imcarie发布了新的文献求助10
18秒前
szbllc完成签到,获得积分10
19秒前
crx完成签到,获得积分10
19秒前
Angleli完成签到,获得积分10
21秒前
小二郎应助懦弱的新梅采纳,获得10
22秒前
KuangHS完成签到,获得积分10
23秒前
wanci应助Xhnz采纳,获得10
23秒前
heavennew完成签到,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704