Scale-adaptive super-feature based MetricUNet for brain tumor segmentation

体素 分割 人工智能 计算机科学 特征(语言学) 背景(考古学) 公制(单位) 模式识别(心理学) 计算 像素 图像分割 比例(比率) 脑瘤 计算机视觉 算法 医学 病理 语言学 运营管理 哲学 经济 古生物学 物理 量子力学 生物
作者
Yujian Liu,Jie Du,Chi‐Man Vong,Guanghui Yue,Lei Yi,Yuli Wang,Baiying Lei,Tianfu Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103442-103442 被引量:23
标识
DOI:10.1016/j.bspc.2021.103442
摘要

Accurate segmentation of brain tumors is very essential for brain tumor diagnosis and treatment plans. In general, brain tumor includes WT (whole tumor), TC (tumor core) and ET (enhance tumor), and TC and ET are much more important than WT clinically. However, TC and ET usually contain blurred boundaries, and occupy much fewer pixels than WT. Recently, MetricUNet based on voxel-metric learning is proposed, which considers voxel-level feature relationship in the image to obtain finer segmentation results. However, it may not be applicable in brain tumor segmentation. That is because the scales/sizes of brain tumor greatly vary between images and causing ineffective model training in MetricUNet. Moreover, it has heavy computation for considering voxel-level feature relationship in brain tumor segmentation. In this work, a Scale-adaptive Super-feature based MetricUNet (S2MetricUNet) is proposed and provides two advantages: i) higher accuracy on TC and ET since a novel scale-adaptive metric loss is proposed for learning of more context information about TC and ET while addressing the scale variation between images; ii) significant reduction on computation since a super voxel-level feature is proposed to represent a group of voxel-level features (of the same label) in non-edge regions. The experimental results on public dataset BraTS2019 have demonstrated that the improvement of our method is up to 3.38% on TC and 3.82% on ET in terms Dice. Moreover, the computation of our S2MetricUNet is reduced to about 1/11 of MetricUNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助BINGBING1230采纳,获得10
刚刚
leezh发布了新的文献求助10
1秒前
白鸽鸽完成签到,获得积分10
1秒前
2秒前
chenzihao完成签到,获得积分10
6秒前
小九九发布了新的文献求助10
7秒前
Orange应助小鹏采纳,获得10
7秒前
端庄青雪完成签到,获得积分10
10秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
排骨年糕发布了新的文献求助10
12秒前
刘璟高完成签到,获得积分10
14秒前
小鹏完成签到,获得积分10
15秒前
18秒前
英俊的铭应助小九九采纳,获得10
18秒前
庸人自扰完成签到,获得积分10
21秒前
小鹏发布了新的文献求助10
22秒前
十一月的阴天完成签到,获得积分10
22秒前
23秒前
流香完成签到,获得积分10
23秒前
zzzllove完成签到 ,获得积分10
24秒前
大宝君应助qqqyy采纳,获得30
25秒前
天空之城发布了新的文献求助200
27秒前
回眸是明眸完成签到,获得积分10
27秒前
思源应助leezh采纳,获得10
27秒前
苏桑焉完成签到 ,获得积分10
27秒前
27秒前
27秒前
999完成签到,获得积分10
30秒前
科研通AI6应助安白采纳,获得10
31秒前
平常小懒猪完成签到,获得积分10
32秒前
研友_LNBeyL发布了新的文献求助10
32秒前
淡定访枫发布了新的文献求助10
32秒前
32秒前
isle完成签到 ,获得积分10
33秒前
33秒前
扬帆起航行万里完成签到,获得积分10
34秒前
无极微光应助十一采纳,获得20
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316