Scale-adaptive super-feature based MetricUNet for brain tumor segmentation

体素 分割 人工智能 计算机科学 特征(语言学) 背景(考古学) 公制(单位) 模式识别(心理学) 计算 像素 图像分割 比例(比率) 脑瘤 计算机视觉 算法 医学 病理 语言学 运营管理 哲学 经济 古生物学 物理 量子力学 生物
作者
Yujian Liu,Jie Du,Chi‐Man Vong,Guanghui Yue,Lei Yi,Yuli Wang,Baiying Lei,Tianfu Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103442-103442 被引量:23
标识
DOI:10.1016/j.bspc.2021.103442
摘要

Accurate segmentation of brain tumors is very essential for brain tumor diagnosis and treatment plans. In general, brain tumor includes WT (whole tumor), TC (tumor core) and ET (enhance tumor), and TC and ET are much more important than WT clinically. However, TC and ET usually contain blurred boundaries, and occupy much fewer pixels than WT. Recently, MetricUNet based on voxel-metric learning is proposed, which considers voxel-level feature relationship in the image to obtain finer segmentation results. However, it may not be applicable in brain tumor segmentation. That is because the scales/sizes of brain tumor greatly vary between images and causing ineffective model training in MetricUNet. Moreover, it has heavy computation for considering voxel-level feature relationship in brain tumor segmentation. In this work, a Scale-adaptive Super-feature based MetricUNet (S2MetricUNet) is proposed and provides two advantages: i) higher accuracy on TC and ET since a novel scale-adaptive metric loss is proposed for learning of more context information about TC and ET while addressing the scale variation between images; ii) significant reduction on computation since a super voxel-level feature is proposed to represent a group of voxel-level features (of the same label) in non-edge regions. The experimental results on public dataset BraTS2019 have demonstrated that the improvement of our method is up to 3.38% on TC and 3.82% on ET in terms Dice. Moreover, the computation of our S2MetricUNet is reduced to about 1/11 of MetricUNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燧人氏完成签到,获得积分10
刚刚
刚刚
湖畔望月寒完成签到,获得积分20
刚刚
冷如松完成签到,获得积分10
1秒前
1秒前
shan发布了新的文献求助10
1秒前
Faier完成签到,获得积分10
1秒前
1秒前
yiyi完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
韩soso发布了新的文献求助10
2秒前
英姑应助lz123采纳,获得10
2秒前
14完成签到 ,获得积分10
3秒前
3秒前
dulcetlemon完成签到 ,获得积分10
3秒前
4秒前
动听衬衫发布了新的文献求助10
4秒前
ws_WS_完成签到 ,获得积分10
5秒前
5秒前
wyyt完成签到,获得积分10
5秒前
烨然发布了新的文献求助10
5秒前
yangshu发布了新的文献求助10
6秒前
给我嘉晚饭完成签到 ,获得积分10
6秒前
晨屿完成签到,获得积分10
6秒前
很美味完成签到,获得积分20
6秒前
完美的香芦完成签到,获得积分10
6秒前
7秒前
季宇完成签到,获得积分10
7秒前
sos完成签到,获得积分10
8秒前
8秒前
zmz发布了新的文献求助10
8秒前
张锐斌发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
爱听歌安彤完成签到,获得积分10
9秒前
lxt完成签到,获得积分10
9秒前
9秒前
9秒前
aaa完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005