Scale-adaptive super-feature based MetricUNet for brain tumor segmentation

体素 分割 人工智能 计算机科学 特征(语言学) 背景(考古学) 公制(单位) 模式识别(心理学) 计算 像素 图像分割 比例(比率) 脑瘤 计算机视觉 算法 医学 病理 语言学 运营管理 哲学 经济 古生物学 物理 量子力学 生物
作者
Yujian Liu,Jie Du,Chi‐Man Vong,Guanghui Yue,Lei Yi,Yuli Wang,Baiying Lei,Tianfu Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103442-103442 被引量:23
标识
DOI:10.1016/j.bspc.2021.103442
摘要

Accurate segmentation of brain tumors is very essential for brain tumor diagnosis and treatment plans. In general, brain tumor includes WT (whole tumor), TC (tumor core) and ET (enhance tumor), and TC and ET are much more important than WT clinically. However, TC and ET usually contain blurred boundaries, and occupy much fewer pixels than WT. Recently, MetricUNet based on voxel-metric learning is proposed, which considers voxel-level feature relationship in the image to obtain finer segmentation results. However, it may not be applicable in brain tumor segmentation. That is because the scales/sizes of brain tumor greatly vary between images and causing ineffective model training in MetricUNet. Moreover, it has heavy computation for considering voxel-level feature relationship in brain tumor segmentation. In this work, a Scale-adaptive Super-feature based MetricUNet (S2MetricUNet) is proposed and provides two advantages: i) higher accuracy on TC and ET since a novel scale-adaptive metric loss is proposed for learning of more context information about TC and ET while addressing the scale variation between images; ii) significant reduction on computation since a super voxel-level feature is proposed to represent a group of voxel-level features (of the same label) in non-edge regions. The experimental results on public dataset BraTS2019 have demonstrated that the improvement of our method is up to 3.38% on TC and 3.82% on ET in terms Dice. Moreover, the computation of our S2MetricUNet is reduced to about 1/11 of MetricUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
协和_子鱼发布了新的文献求助20
刚刚
刚刚
狂奔弟弟完成签到 ,获得积分10
2秒前
2秒前
6秒前
6秒前
古木完成签到,获得积分20
6秒前
Sean发布了新的文献求助50
8秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
认真银耳汤完成签到,获得积分10
12秒前
12秒前
14秒前
花笙米发布了新的文献求助10
14秒前
15秒前
852应助自由的冰蓝采纳,获得10
15秒前
一木张完成签到,获得积分10
16秒前
狂奔弟弟2完成签到 ,获得积分10
16秒前
pass完成签到 ,获得积分10
17秒前
弄香完成签到,获得积分10
17秒前
17秒前
小高关注了科研通微信公众号
18秒前
个性大米完成签到,获得积分20
19秒前
starrism完成签到,获得积分10
19秒前
小曾发布了新的文献求助10
19秒前
Vermouth发布了新的文献求助10
20秒前
22秒前
dengdeng发布了新的文献求助10
23秒前
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
soy发布了新的文献求助10
27秒前
28秒前
李健的小迷弟应助Blanca采纳,获得10
28秒前
28秒前
张欢欢完成签到,获得积分10
29秒前
安诺完成签到,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492848
求助须知:如何正确求助?哪些是违规求助? 4590743
关于积分的说明 14432175
捐赠科研通 4523317
什么是DOI,文献DOI怎么找? 2478264
邀请新用户注册赠送积分活动 1463283
关于科研通互助平台的介绍 1436014