判别式
杠杆(统计)
计算机科学
人工智能
嵌入
特征(语言学)
机器学习
班级(哲学)
标记数据
模式识别(心理学)
基本事实
半监督学习
多标签分类
特征学习
语言学
哲学
作者
Zhen Zhao,Luping Zhou,Lei Wang,Yinghuan Shi,Yang Gao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2022-06-28
卷期号:36 (8): 9208-9216
被引量:1
标识
DOI:10.1609/aaai.v36i8.20907
摘要
The key to semi-supervised learning (SSL) is to explore adequate information to leverage the unlabeled data. Current dominant approaches aim to generate pseudo-labels on weakly augmented instances and train models on their corresponding strongly augmented variants with high-confidence results. However, such methods are limited in excluding samples with low-confidence pseudo-labels and under-utilization of the label information. In this paper, we emphasize the cruciality of the label information and propose a Label-guided Self-training approach to Semi-supervised Learning (LaSSL), which improves pseudo-label generations from two mutually boosted strategies. First, with the ground-truth labels and iteratively-polished pseudo-labels, we explore instance relations among all samples and then minimize a class-aware contrastive loss to learn discriminative feature representations that make same-class samples gathered and different-class samples scattered. Second, on top of improved feature representations, we propagate the label information to the unlabeled samples across the potential data manifold at the feature-embedding level, which can further improve the labelling of samples with reference to their neighbours. These two strategies are seamlessly integrated and mutually promoted across the whole training process. We evaluate LaSSL on several classification benchmarks under partially labeled settings and demonstrate its superiority over the state-of-the-art approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI