LaSSL: Label-Guided Self-Training for Semi-supervised Learning

判别式 杠杆(统计) 计算机科学 人工智能 嵌入 特征(语言学) 机器学习 班级(哲学) 标记数据 模式识别(心理学) 基本事实 半监督学习 多标签分类 特征学习 语言学 哲学
作者
Zhen Zhao,Luping Zhou,Lei Wang,Yinghuan Shi,Yang Gao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (8): 9208-9216 被引量:1
标识
DOI:10.1609/aaai.v36i8.20907
摘要

The key to semi-supervised learning (SSL) is to explore adequate information to leverage the unlabeled data. Current dominant approaches aim to generate pseudo-labels on weakly augmented instances and train models on their corresponding strongly augmented variants with high-confidence results. However, such methods are limited in excluding samples with low-confidence pseudo-labels and under-utilization of the label information. In this paper, we emphasize the cruciality of the label information and propose a Label-guided Self-training approach to Semi-supervised Learning (LaSSL), which improves pseudo-label generations from two mutually boosted strategies. First, with the ground-truth labels and iteratively-polished pseudo-labels, we explore instance relations among all samples and then minimize a class-aware contrastive loss to learn discriminative feature representations that make same-class samples gathered and different-class samples scattered. Second, on top of improved feature representations, we propagate the label information to the unlabeled samples across the potential data manifold at the feature-embedding level, which can further improve the labelling of samples with reference to their neighbours. These two strategies are seamlessly integrated and mutually promoted across the whole training process. We evaluate LaSSL on several classification benchmarks under partially labeled settings and demonstrate its superiority over the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lili完成签到,获得积分20
1秒前
小小雪发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
李依伊发布了新的文献求助10
3秒前
3秒前
windy完成签到,获得积分10
3秒前
lull发布了新的文献求助10
3秒前
4秒前
明亮从梦发布了新的文献求助10
4秒前
Cici发布了新的文献求助10
5秒前
精明念寒发布了新的文献求助10
5秒前
体贴樱桃完成签到,获得积分10
5秒前
5秒前
123完成签到,获得积分10
5秒前
Qiqige完成签到,获得积分10
5秒前
嘟嘟嘟嘟发布了新的文献求助20
6秒前
6秒前
7秒前
水刊保毕业应助TT2022采纳,获得10
8秒前
8秒前
淡淡的日记本完成签到 ,获得积分10
8秒前
lyl19880908应助sometimesawake采纳,获得10
9秒前
9秒前
Tonnyjing应助adhdff采纳,获得10
10秒前
Cici完成签到,获得积分10
11秒前
windy发布了新的文献求助20
11秒前
寻道图强应助gongweiliu采纳,获得30
11秒前
Lucas应助文艺芙采纳,获得10
11秒前
Thi发布了新的文献求助10
12秒前
welch发布了新的文献求助10
12秒前
hh1234发布了新的文献求助10
12秒前
欣然侯猴发布了新的文献求助10
13秒前
科研能发布了新的文献求助10
13秒前
尼克拉倒发布了新的文献求助30
13秒前
追寻的紫易完成签到,获得积分10
14秒前
faaa完成签到,获得积分10
14秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083