Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications

遗忘 计算机科学 人工智能 水准点(测量) 自编码 任务(项目管理) 机器学习 多任务学习 深度学习 卷积神经网络 集合(抽象数据类型) 工程类 哲学 语言学 程序设计语言 系统工程 地理 大地测量学
作者
Reem Mahmoud,Hazem Hajj
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (6): 1-20 被引量:2
标识
DOI:10.1145/3502728
摘要

One key objective of artificial intelligence involves the continuous adaptation of machine learning models to new tasks. This branch of continual learning is also referred to as lifelong learning (LL), where a major challenge is to minimize catastrophic forgetting, or forgetting previously learned tasks. While previous work on catastrophic forgetting has been focused on vision problems; this work targets time-series data. In addition to choosing an architecture appropriate for time-series sequences, our work addresses limitations in previous work, including the handling of distribution shifts in class labels. We present multi-objective learning with three loss functions to minimize catastrophic forgetting, prediction error, and errors in generalizing across label shifts, simultaneously. We build a multi-task autoencoder network with a hierarchical convolutional recurrent architecture. The proposed method is capable of learning multiple time-series tasks simultaneously. For cases where the model needs to learn multiple new tasks, we propose sequential learning, starting with tasks that have the best individual performances. This solution was evaluated on four benchmark human activity recognition datasets collected from mobile sensing devices. A wide set of baseline comparisons is performed, and an ablation analysis is run to evaluate the impact of the different losses in the proposed multi-objective method. The results demonstrate an up to 4% performance improvement in catastrophic forgetting compared to the use of loss functions in state-of-the-art solutions while demonstrating minimal losses compared to upper bound methods of traditional fine-tuning (FT) and multi-task learning (MTL).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
tonyguo完成签到,获得积分10
3秒前
朴素若枫完成签到,获得积分10
5秒前
LaiZiwen发布了新的文献求助10
5秒前
euy发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
此间少年郎完成签到 ,获得积分10
9秒前
xuan完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
ccmxigua发布了新的文献求助10
13秒前
13秒前
今后应助胡萝卜采纳,获得10
14秒前
14秒前
科研通AI6应助夜莺采纳,获得10
14秒前
彭于晏应助kevin采纳,获得10
14秒前
h1909完成签到,获得积分10
14秒前
爱的魔力转圈圈完成签到,获得积分10
15秒前
orixero应助旺仔糖采纳,获得10
15秒前
bob发布了新的文献求助10
15秒前
小亓发布了新的文献求助10
15秒前
18秒前
漱泉枕石完成签到,获得积分10
18秒前
华仔应助edtaa采纳,获得10
18秒前
田様应助euy采纳,获得10
18秒前
外向汽车发布了新的文献求助10
19秒前
Nextf1sh完成签到,获得积分10
19秒前
xxy关注了科研通微信公众号
20秒前
科研通AI5应助张立敏采纳,获得10
22秒前
22秒前
23秒前
铁甲小宝完成签到,获得积分10
23秒前
77完成签到,获得积分10
23秒前
SallyLuo完成签到,获得积分10
23秒前
24秒前
fdawn完成签到,获得积分10
24秒前
旺仔糖完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599