Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications

遗忘 计算机科学 人工智能 水准点(测量) 自编码 任务(项目管理) 机器学习 多任务学习 深度学习 卷积神经网络 集合(抽象数据类型) 工程类 哲学 语言学 程序设计语言 大地测量学 系统工程 地理
作者
Reem Mahmoud,Hazem Hajj
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (6): 1-20 被引量:2
标识
DOI:10.1145/3502728
摘要

One key objective of artificial intelligence involves the continuous adaptation of machine learning models to new tasks. This branch of continual learning is also referred to as lifelong learning (LL), where a major challenge is to minimize catastrophic forgetting, or forgetting previously learned tasks. While previous work on catastrophic forgetting has been focused on vision problems; this work targets time-series data. In addition to choosing an architecture appropriate for time-series sequences, our work addresses limitations in previous work, including the handling of distribution shifts in class labels. We present multi-objective learning with three loss functions to minimize catastrophic forgetting, prediction error, and errors in generalizing across label shifts, simultaneously. We build a multi-task autoencoder network with a hierarchical convolutional recurrent architecture. The proposed method is capable of learning multiple time-series tasks simultaneously. For cases where the model needs to learn multiple new tasks, we propose sequential learning, starting with tasks that have the best individual performances. This solution was evaluated on four benchmark human activity recognition datasets collected from mobile sensing devices. A wide set of baseline comparisons is performed, and an ablation analysis is run to evaluate the impact of the different losses in the proposed multi-objective method. The results demonstrate an up to 4% performance improvement in catastrophic forgetting compared to the use of loss functions in state-of-the-art solutions while demonstrating minimal losses compared to upper bound methods of traditional fine-tuning (FT) and multi-task learning (MTL).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leisure发布了新的文献求助10
刚刚
ECT完成签到,获得积分10
刚刚
坚强枫发布了新的文献求助30
刚刚
闪电侠完成签到 ,获得积分10
1秒前
南宫清涟发布了新的文献求助20
1秒前
hhh完成签到,获得积分10
1秒前
木心应助王木木采纳,获得20
1秒前
axn发布了新的文献求助10
2秒前
NexusExplorer应助Yosemite采纳,获得10
2秒前
111完成签到 ,获得积分10
3秒前
3秒前
曾经的臻完成签到,获得积分10
3秒前
3秒前
系统提示完成签到,获得积分10
3秒前
Chen完成签到,获得积分10
3秒前
JinGN完成签到,获得积分10
4秒前
4秒前
Vaibhav完成签到,获得积分10
5秒前
星辰大海应助图图搞科研采纳,获得10
5秒前
hhh发布了新的文献求助10
5秒前
6秒前
6秒前
哦哟发布了新的文献求助30
6秒前
Bio应助123采纳,获得50
6秒前
ccl完成签到,获得积分10
7秒前
sidra完成签到,获得积分10
7秒前
Chen发布了新的文献求助10
7秒前
7秒前
戚薇发布了新的文献求助10
7秒前
呼呼虫完成签到 ,获得积分10
8秒前
苏silence发布了新的文献求助80
8秒前
9秒前
9秒前
陈飞飞完成签到,获得积分10
9秒前
SYY发布了新的文献求助10
9秒前
安沁完成签到,获得积分10
9秒前
10秒前
1565028013完成签到,获得积分10
10秒前
11秒前
hooo发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582