Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications

遗忘 计算机科学 人工智能 水准点(测量) 自编码 任务(项目管理) 机器学习 多任务学习 深度学习 卷积神经网络 集合(抽象数据类型) 工程类 哲学 语言学 程序设计语言 系统工程 地理 大地测量学
作者
Reem Mahmoud,Hazem Hajj
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (6): 1-20 被引量:2
标识
DOI:10.1145/3502728
摘要

One key objective of artificial intelligence involves the continuous adaptation of machine learning models to new tasks. This branch of continual learning is also referred to as lifelong learning (LL), where a major challenge is to minimize catastrophic forgetting, or forgetting previously learned tasks. While previous work on catastrophic forgetting has been focused on vision problems; this work targets time-series data. In addition to choosing an architecture appropriate for time-series sequences, our work addresses limitations in previous work, including the handling of distribution shifts in class labels. We present multi-objective learning with three loss functions to minimize catastrophic forgetting, prediction error, and errors in generalizing across label shifts, simultaneously. We build a multi-task autoencoder network with a hierarchical convolutional recurrent architecture. The proposed method is capable of learning multiple time-series tasks simultaneously. For cases where the model needs to learn multiple new tasks, we propose sequential learning, starting with tasks that have the best individual performances. This solution was evaluated on four benchmark human activity recognition datasets collected from mobile sensing devices. A wide set of baseline comparisons is performed, and an ablation analysis is run to evaluate the impact of the different losses in the proposed multi-objective method. The results demonstrate an up to 4% performance improvement in catastrophic forgetting compared to the use of loss functions in state-of-the-art solutions while demonstrating minimal losses compared to upper bound methods of traditional fine-tuning (FT) and multi-task learning (MTL).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小满发布了新的文献求助10
刚刚
刚刚
好了没了发布了新的文献求助10
1秒前
幻海潮生完成签到,获得积分10
2秒前
2秒前
AN应助青牛采纳,获得200
3秒前
我是老大应助赵浩楠采纳,获得10
4秒前
鲤鱼笑南完成签到,获得积分10
4秒前
周健发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
香蕉觅云应助光亮念文采纳,获得10
5秒前
Flames完成签到,获得积分10
5秒前
WT完成签到,获得积分10
5秒前
departure完成签到,获得积分10
6秒前
Yixuan_Zou发布了新的文献求助10
6秒前
英俊的铭应助小满采纳,获得10
7秒前
科研通AI6应助bcl采纳,获得10
9秒前
自觉紫安完成签到,获得积分10
9秒前
9秒前
9秒前
愉快的花卷完成签到,获得积分10
10秒前
wop111应助深情的幻桃采纳,获得30
10秒前
shuaiBsen完成签到,获得积分10
10秒前
石榴姐姐完成签到 ,获得积分10
11秒前
希望天下0贩的0应助Fei_U采纳,获得30
11秒前
12秒前
嘻嘻完成签到,获得积分10
13秒前
丘比特应助kk采纳,获得10
13秒前
小满完成签到,获得积分10
14秒前
14秒前
14秒前
17秒前
17秒前
胖呆呆发布了新的文献求助10
17秒前
蕾蕾发布了新的文献求助10
17秒前
zr发布了新的文献求助10
18秒前
Yixuan_Zou完成签到,获得积分10
18秒前
深情安青应助孤独的鞋垫采纳,获得10
19秒前
Picopy发布了新的文献求助10
19秒前
荻野完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091