Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications

遗忘 计算机科学 人工智能 水准点(测量) 自编码 任务(项目管理) 机器学习 多任务学习 深度学习 卷积神经网络 集合(抽象数据类型) 工程类 哲学 语言学 程序设计语言 大地测量学 系统工程 地理
作者
Reem Mahmoud,Hazem Hajj
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (6): 1-20 被引量:2
标识
DOI:10.1145/3502728
摘要

One key objective of artificial intelligence involves the continuous adaptation of machine learning models to new tasks. This branch of continual learning is also referred to as lifelong learning (LL), where a major challenge is to minimize catastrophic forgetting, or forgetting previously learned tasks. While previous work on catastrophic forgetting has been focused on vision problems; this work targets time-series data. In addition to choosing an architecture appropriate for time-series sequences, our work addresses limitations in previous work, including the handling of distribution shifts in class labels. We present multi-objective learning with three loss functions to minimize catastrophic forgetting, prediction error, and errors in generalizing across label shifts, simultaneously. We build a multi-task autoencoder network with a hierarchical convolutional recurrent architecture. The proposed method is capable of learning multiple time-series tasks simultaneously. For cases where the model needs to learn multiple new tasks, we propose sequential learning, starting with tasks that have the best individual performances. This solution was evaluated on four benchmark human activity recognition datasets collected from mobile sensing devices. A wide set of baseline comparisons is performed, and an ablation analysis is run to evaluate the impact of the different losses in the proposed multi-objective method. The results demonstrate an up to 4% performance improvement in catastrophic forgetting compared to the use of loss functions in state-of-the-art solutions while demonstrating minimal losses compared to upper bound methods of traditional fine-tuning (FT) and multi-task learning (MTL).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助空格TNT采纳,获得10
刚刚
老王完成签到,获得积分10
刚刚
2秒前
莫小烦发布了新的文献求助10
5秒前
6秒前
8秒前
天将明完成签到 ,获得积分10
9秒前
Lucas应助明理的凌旋采纳,获得10
9秒前
诚心的砖头完成签到 ,获得积分10
10秒前
11秒前
redamancy发布了新的文献求助30
11秒前
12秒前
上官枫发布了新的文献求助10
13秒前
15秒前
巾凡完成签到 ,获得积分10
16秒前
小月亮完成签到,获得积分10
16秒前
友好寻真完成签到,获得积分10
16秒前
m赤子心发布了新的文献求助10
17秒前
17秒前
千千千千千千青完成签到 ,获得积分10
20秒前
研友_ZzwoR8发布了新的文献求助10
21秒前
迅速的易巧完成签到 ,获得积分10
22秒前
岁月如歌完成签到,获得积分10
23秒前
25秒前
丘比特应助leilei采纳,获得10
27秒前
27秒前
28秒前
研友_ZzwoR8完成签到,获得积分10
28秒前
zbn完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
30秒前
31秒前
wanci应助zbn采纳,获得10
32秒前
友好寻真发布了新的文献求助10
33秒前
41秒前
酷波er应助Bordyfan采纳,获得10
41秒前
帅气大神发布了新的文献求助10
46秒前
等待世平完成签到,获得积分10
46秒前
48秒前
夏风完成签到,获得积分10
49秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350943
求助须知:如何正确求助?哪些是违规求助? 2976496
关于积分的说明 8675277
捐赠科研通 2657650
什么是DOI,文献DOI怎么找? 1455181
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664225