Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications

遗忘 计算机科学 人工智能 水准点(测量) 自编码 任务(项目管理) 机器学习 多任务学习 深度学习 卷积神经网络 集合(抽象数据类型) 工程类 哲学 语言学 程序设计语言 系统工程 地理 大地测量学
作者
Reem Mahmoud,Hazem Hajj
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (6): 1-20 被引量:2
标识
DOI:10.1145/3502728
摘要

One key objective of artificial intelligence involves the continuous adaptation of machine learning models to new tasks. This branch of continual learning is also referred to as lifelong learning (LL), where a major challenge is to minimize catastrophic forgetting, or forgetting previously learned tasks. While previous work on catastrophic forgetting has been focused on vision problems; this work targets time-series data. In addition to choosing an architecture appropriate for time-series sequences, our work addresses limitations in previous work, including the handling of distribution shifts in class labels. We present multi-objective learning with three loss functions to minimize catastrophic forgetting, prediction error, and errors in generalizing across label shifts, simultaneously. We build a multi-task autoencoder network with a hierarchical convolutional recurrent architecture. The proposed method is capable of learning multiple time-series tasks simultaneously. For cases where the model needs to learn multiple new tasks, we propose sequential learning, starting with tasks that have the best individual performances. This solution was evaluated on four benchmark human activity recognition datasets collected from mobile sensing devices. A wide set of baseline comparisons is performed, and an ablation analysis is run to evaluate the impact of the different losses in the proposed multi-objective method. The results demonstrate an up to 4% performance improvement in catastrophic forgetting compared to the use of loss functions in state-of-the-art solutions while demonstrating minimal losses compared to upper bound methods of traditional fine-tuning (FT) and multi-task learning (MTL).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
白桃战士完成签到,获得积分10
刚刚
李健的粉丝团团长应助xyy采纳,获得10
刚刚
闪闪的jian发布了新的文献求助10
刚刚
松鼠15111完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
orixero应助shouyi886采纳,获得10
1秒前
在水一方应助leranlily采纳,获得10
1秒前
不想起名字完成签到,获得积分10
1秒前
傲天大侠完成签到 ,获得积分10
1秒前
non发布了新的文献求助10
2秒前
2秒前
阳光彩虹小白马完成签到,获得积分20
2秒前
LIUUU完成签到,获得积分10
2秒前
传奇3应助like采纳,获得10
2秒前
3秒前
wg发布了新的文献求助10
3秒前
慕言完成签到 ,获得积分10
4秒前
4秒前
田様应助zouzou采纳,获得10
4秒前
4秒前
sssxxx完成签到,获得积分10
4秒前
5秒前
斩渔发布了新的文献求助10
6秒前
xyy完成签到,获得积分10
6秒前
Niki发布了新的文献求助20
6秒前
完美世界应助炙热果汁采纳,获得10
6秒前
螺内酯发布了新的文献求助10
6秒前
6秒前
巧克力完成签到,获得积分10
7秒前
7秒前
Maxwell完成签到,获得积分10
7秒前
Wen发布了新的文献求助10
7秒前
薏米发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894