SFA-Net: A Selective Features Absorption Network for Object Detection in Rainy Weather Conditions.

子网 能见度 计算机科学 卷积神经网络 目标检测 人工智能 集合(抽象数据类型) 特征(语言学) 模式识别(心理学) 对象(语法) 计算机视觉 遥感
作者
Shih-Chia Huang,Quoc-Viet Hoang,Trung-Hieu Le
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tnnls.2021.3125679
摘要

In recent years, object detection approaches using deep convolutional neural networks (CNNs) have derived major advances in normal images. However, such success is hardly achieved with rainy images due to lack of visibility. Aiming to bridge this gap, in this article, we present a novel selective features absorption network (SFA-Net) to improve the performance of object detection not only in rainy weather conditions but also in favorable weather conditions. SFA-Net accomplishes this objective by utilizing three subnetworks, where the feature selection subnetwork is concatenated with the object detection subnetwork through the feature absorption subnetwork to form a unified model. To promote further advancement in object detection impaired by rain, we propose a large-scale rainy image dataset, named srRain, which contains both synthetic rainy images and real-world rainy images for training and testing purposes. srRain is comprised of 25,900 rainy images depicting diverse driving scenarios in the presence of rain with a total of 181,164 instances interpreting five common object categories. Experimental results display that our SFA-Net reaches the highest mean average precision (mAP) of 77.53% on a normal image set, 62.52% on a synthetic rainy image set, 37.34% on a collected natural rainy image set, and 32.86% on a published real rainy image set, surpassing current state-of-the-art object detectors and the combination of image deraining and object detection models while retaining a high speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsy完成签到,获得积分10
刚刚
1秒前
pagoda完成签到,获得积分10
4秒前
WOLF发布了新的文献求助10
7秒前
7秒前
边港洋发布了新的文献求助10
11秒前
pagoda发布了新的文献求助10
13秒前
13秒前
漆漆漆漆漆完成签到,获得积分10
15秒前
程瑞哲完成签到,获得积分10
16秒前
roselau完成签到,获得积分10
17秒前
HZBX完成签到,获得积分10
17秒前
wuyanchi完成签到,获得积分20
18秒前
19秒前
19秒前
夜雨声烦完成签到,获得积分20
21秒前
23秒前
Lucas应助程瑞哲采纳,获得10
24秒前
翯翯完成签到,获得积分10
28秒前
YFW发布了新的文献求助10
29秒前
骆驼林子完成签到,获得积分10
31秒前
无语的康乃馨完成签到,获得积分10
31秒前
小蘑菇应助沐言采纳,获得10
33秒前
liuttinn完成签到,获得积分10
33秒前
36秒前
李爱国应助Apricot采纳,获得10
36秒前
YZJing完成签到,获得积分10
37秒前
Rebeccaiscute完成签到 ,获得积分10
39秒前
爱静静应助倒数21采纳,获得10
41秒前
41秒前
Hello应助追雨的风采纳,获得10
42秒前
笛笙发布了新的文献求助30
42秒前
43秒前
mn略略略完成签到,获得积分10
44秒前
吃瓜少女应助研友_LOoomL采纳,获得10
45秒前
左丘完成签到,获得积分10
45秒前
Apricot发布了新的文献求助10
47秒前
李健应助sherman采纳,获得10
48秒前
吗喽为您接诊完成签到,获得积分10
49秒前
52秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266380
求助须知:如何正确求助?哪些是违规求助? 2906179
关于积分的说明 8336943
捐赠科研通 2576617
什么是DOI,文献DOI怎么找? 1400623
科研通“疑难数据库(出版商)”最低求助积分说明 654794
邀请新用户注册赠送积分活动 633661