Adapt and overcome: Perceptions of adaptive autonomous agents for human-AI teaming

自治 群体凝聚力 集合(抽象数据类型) 背景(考古学) 感知 计算机科学 心理学 控制(管理) 团队效能 团队合作 过程(计算) 应用心理学 情感(语言学) 社会心理学 知识管理 人工智能 神经科学 政治学 法学 程序设计语言 沟通 古生物学 操作系统 生物
作者
Allyson I. Hauptman,Beau G. Schelble,Nathan J. McNeese,Kapil Chalil Madathil
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:138: 107451-107451 被引量:32
标识
DOI:10.1016/j.chb.2022.107451
摘要

Rapid advances in AI technologies have caused teams to explore the use of AI agents as full, active members of the team. The complex environments that teams occupy require human team members to constantly adapt their behaviors, and thus the ability of AI teammates to similarly adapt to changing situations significantly enhances the team's chances to succeed. In order to design such agents, it is important that we understand not only how to identify the amount of autonomous control AI agents have over their decisions, but also how changes to this control cognitively affects the rest of the team. Professional organizations often break their work cycles into phases that set limits on the team members' actions, and we propose that a similar process could be used to define the autonomy levels of AI teammates. Cyber incident response is an ideal context for this proposal, as we were able to use incident response phases to explore how a team's work cycle could guide an AI agent's changing level of autonomy. Using a mixed methods approach, we recruited 103 participants to complete a factorial survey containing ten contextual vignettes focused on an AI teammate's level of autonomy in incident response contexts, and from these participants we conducted twenty-two follow-on qualitative interviews that further explored how the participants felt an AI agent's adaptive capabilities would affect team performance and cohesiveness. Our results showed that work cycles can be used to assign autonomy levels to adaptive AI agents based upon the degree of formal processes and predictability of the team's tasks during the cycle, and that dynamic, human-like adaptation methods are vital to effective human-AI teams. This research provides significant contributions to the HCI community by proposing design recommendations for the development of adaptive autonomous teammates that both enhance Human-AI teams' productivity and promote positive team dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Six_seven发布了新的文献求助10
1秒前
嗯嗯发布了新的文献求助10
2秒前
2秒前
狂野的河马完成签到,获得积分10
3秒前
小猫爬楼梯完成签到,获得积分10
3秒前
朱朱发布了新的文献求助10
3秒前
1点点发布了新的文献求助10
3秒前
葳蕤苍生发布了新的文献求助10
4秒前
勤奋的松鼠完成签到,获得积分10
4秒前
4秒前
happyccch完成签到,获得积分0
4秒前
检检边lin完成签到,获得积分10
5秒前
背后的鹭洋完成签到,获得积分10
5秒前
5秒前
淡淡的发卡完成签到,获得积分10
6秒前
yanghua发布了新的文献求助10
6秒前
6秒前
李健应助AKs采纳,获得10
6秒前
艽野完成签到,获得积分10
6秒前
暗黑同学完成签到,获得积分10
7秒前
MT完成签到 ,获得积分10
7秒前
叶叶发布了新的文献求助10
7秒前
BOOP完成签到,获得积分10
7秒前
Jack完成签到,获得积分10
7秒前
8秒前
sumu完成签到,获得积分10
8秒前
哈哈哈完成签到,获得积分10
9秒前
Six_seven完成签到,获得积分10
9秒前
9秒前
9秒前
lily336699发布了新的文献求助10
9秒前
虚幻的璟完成签到,获得积分10
10秒前
今夕何夕完成签到,获得积分10
10秒前
Rikuya发布了新的文献求助10
10秒前
小程同学完成签到,获得积分10
10秒前
CYT完成签到,获得积分10
10秒前
小巧的诗双完成签到,获得积分10
10秒前
ding应助wanayu采纳,获得30
11秒前
情怀应助1点点采纳,获得10
11秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3235033
求助须知:如何正确求助?哪些是违规求助? 2881221
关于积分的说明 8219926
捐赠科研通 2548967
什么是DOI,文献DOI怎么找? 1378095
科研通“疑难数据库(出版商)”最低求助积分说明 648121
邀请新用户注册赠送积分活动 623590