计算机科学
人工智能
分割
红外线的
融合
图像分割
图像融合
计算机视觉
火灾探测
热红外
模式识别(心理学)
纹理(宇宙学)
传感器融合
图像纹理
图像(数学)
工程类
物理
建筑工程
语言学
哲学
光学
作者
Mohamed Tlig,Moez Bouchouicha,Mounir Sayadi,Eric Moreau
标识
DOI:10.1109/itsis56166.2022.10118361
摘要
Forest fires pose a severe threat to several nations throughout the entire word. It frequently leads to important personal, and environmental losses. Because only infrared or visible images can't provide precise data, the fusion VIS/IR images can improve in fire detection. Therefore, combining VIS/IR images includes thermal radiation data with precise texture information. In the paper, first, we evaluate the efficacy of VIS/IR fusion methods using chosen criteria. Second, for fire segmentation, we employ U-Net with pre-trained ResNet50.Finally, results show that fusion stage before the semantic segmentation stage leads to better results compared to visible images only.
科研通智能强力驱动
Strongly Powered by AbleSci AI