亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of OCT images of short-term response to anti-VEGF treatment for diabetic macular edema using different generative adversarial networks

糖尿病性黄斑水肿 光学相干层析成像 可比性 生成对抗网络 医学 人工智能 眼科 计算机科学 深度学习 糖尿病性视网膜病变 糖尿病 数学 组合数学 内分泌学
作者
Shaopeng Liu,Wanlu Hu,Fabao Xu,Wenjie Chen,Jie Liu,Xuechen Yu,Zhengfei Wang,Zhongwen Li,Zhiwen Li,Xueying Yang,Boxuan Song,Shaopeng Wang,Kai Wang,Xinpeng Wang,Jiaming Hong,Li Zhang,Jianqiao Li
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:41: 103272-103272 被引量:8
标识
DOI:10.1016/j.pdpdt.2023.103272
摘要

This study sought to assess the predictive performance of optical coherence tomography (OCT) images for the response of diabetic macular edema (DME) patients to anti-vascular endothelial growth factor (VEGF) therapy generated from baseline images using generative adversarial networks (GANs).Patient information, including clinical and imaging data, was obtained from inpatients at the Ophthalmology Department of Qilu Hospital. 715 and 103 pairs of pre-and post-treatment OCT images of DME patients were included in the training and validation sets, respectively. The post-treatment OCT images were used to assess the validity of the generated images. Six different GAN models (CycleGAN, PairGAN, Pix2pixHD, RegGAN, SPADE, UNIT) were applied to predict the efficacy of anti-VEGF treatment by generating OCT images. Independent screening and evaluation experiments were conducted to validate the quality and comparability of images generated by different GAN models.OCT images generated f GAN models exhibited high comparability to the real images, especially for edema absorption. RegGAN exhibited the highest prediction accuracy over the CycleGAN, PairGAN, Pix2pixHD, SPADE, and UNIT models. Further analyses were conducted based on the RegGAN. Most post-therapeutic OCT images (95/103) were difficult to differentiate from the real OCT images by retinal specialists. A mean absolute error of 26.74 ± 21.28 μm was observed for central macular thickness (CMT) between the synthetic and real OCT images.Different generative adversarial networks have different prognostic efficacy for DME, and RegGAN yielded the best performance in our study. Different GAN models yielded good accuracy in predicting the OCT-based response to anti-VEGF treatment at one month. Overall, the application of GAN models can assist clinicians in prognosis prediction of patients with DME to design better treatment strategies and follow-up schedules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
陶醉紫青发布了新的文献求助10
11秒前
Demi_Ming完成签到,获得积分10
17秒前
qx完成签到,获得积分10
26秒前
Saven发布了新的文献求助10
1分钟前
1分钟前
2分钟前
加菲丰丰完成签到,获得积分0
2分钟前
Saven发布了新的文献求助10
2分钟前
Saven完成签到,获得积分10
2分钟前
yuzh完成签到 ,获得积分10
2分钟前
bkagyin应助斯文墨镜采纳,获得10
2分钟前
小白菜完成签到,获得积分10
2分钟前
2分钟前
liudy发布了新的文献求助30
3分钟前
斯文墨镜发布了新的文献求助10
3分钟前
Sunnpy完成签到 ,获得积分10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
3分钟前
JamesPei应助斯文墨镜采纳,获得10
4分钟前
4分钟前
4分钟前
123456发布了新的文献求助10
4分钟前
Kevin完成签到,获得积分10
5分钟前
...完成签到,获得积分10
5分钟前
さくま完成签到,获得积分10
6分钟前
手术刀完成签到 ,获得积分10
6分钟前
竹子完成签到,获得积分10
6分钟前
周周南完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
灰灰发布了新的文献求助10
7分钟前
7分钟前
8分钟前
英姑应助SDNUDRUG采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
伊可创发布了新的文献求助10
8分钟前
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3521536
求助须知:如何正确求助?哪些是违规求助? 3102893
关于积分的说明 9261754
捐赠科研通 2799034
什么是DOI,文献DOI怎么找? 1536357
邀请新用户注册赠送积分活动 714778
科研通“疑难数据库(出版商)”最低求助积分说明 708462