Progressive Dual-Branch Network for Low-Light Image Enhancement

人工智能 计算机科学 计算机视觉 特征(语言学) 块(置换群论) 核(代数) 模式识别(心理学) 数学 几何学 语言学 组合数学 哲学
作者
Hengshuai Cui,Jinjiang Li,Zhen Hua,Linwei Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-18 被引量:5
标识
DOI:10.1109/tim.2022.3216880
摘要

Images captured in low light and backlit conditions are characterized by low brightness, low contrast, and varying degrees of degradation. Simply enhancing image contrast will fully expose hidden noise and color distortion, affecting people's subjective visual perception and performance in other application scenarios. In order to improve the loss of details, color imbalance and artifacts in the enhanced images, we propose a progressive dual branch network(PDBNet) for low-light image enhancement. In this paper, an assisted recovery module(ARM) is designed by exploiting the hybrid correlation and feature complementarity between the inverted image and the low-light image. Feature information at different scales is progressively extracted by cascading multiple ARMs. Considering the network execution efficiency and the amount of parameters, we use depthwise separable convolution(DSC) and asymmetric assisted recovery module(ARM) to improve the computational efficiency of the model. To reduce the degradation caused by enhancing image contrast, the introduction of the large kernel attention(LKA) block allows the network to emphasize hidden low-light information regions, effectively suppressing noise and improving color imbalance. In order to effectively fuse the feature information between the inverse image and the low-light image, an attention fusion block(AFB) is designed. AFB can effectively acquire global feature information and re-encode semantic dependencies between channels. Finally, a fusion reconstruction module(FRM) is designed to further refine the feature information and enhance the information flow between networks. After sufficient qualitative and quantitative experiments in publicly available low-light image datasets, it is known that our method has better visual quality and metric evaluation scores than other state-of-the-art low-light image enhancement methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小周周完成签到 ,获得积分10
刚刚
芥末牛完成签到,获得积分10
刚刚
lee完成签到,获得积分10
刚刚
ztt27999完成签到,获得积分10
1秒前
1秒前
sfwer完成签到,获得积分0
1秒前
林林完成签到,获得积分10
3秒前
4秒前
djfnf发布了新的文献求助10
4秒前
行程完成签到,获得积分20
4秒前
地精术士完成签到,获得积分10
5秒前
xiaoma发布了新的文献求助10
5秒前
科研小笨猪完成签到,获得积分10
8秒前
爱吃辣完成签到,获得积分10
8秒前
yy发布了新的文献求助10
8秒前
好好完成签到,获得积分10
9秒前
无私的聪展完成签到,获得积分10
9秒前
Jarvis应助zzk采纳,获得10
9秒前
Mississippiecho完成签到,获得积分10
9秒前
李小伟完成签到,获得积分20
10秒前
西松屋地铁完成签到 ,获得积分10
10秒前
Wang完成签到,获得积分10
11秒前
一只生物狗完成签到,获得积分10
11秒前
dd123发布了新的文献求助10
12秒前
12秒前
吴建文完成签到 ,获得积分10
13秒前
hongw_liu完成签到,获得积分10
13秒前
反方向的枫完成签到,获得积分10
14秒前
Ali应助ytong采纳,获得10
14秒前
FashionBoy应助光亮的宫苴采纳,获得10
14秒前
坦率的匪完成签到,获得积分10
15秒前
zzaz完成签到,获得积分10
15秒前
多发文章完成签到,获得积分10
15秒前
zzzyyyuuu完成签到 ,获得积分10
16秒前
16秒前
huang完成签到,获得积分10
18秒前
xiaohaonumber2完成签到 ,获得积分10
18秒前
朴实的凡阳完成签到,获得积分10
19秒前
JY'完成签到,获得积分0
19秒前
Tici完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147058
求助须知:如何正确求助?哪些是违规求助? 2798385
关于积分的说明 7828457
捐赠科研通 2454989
什么是DOI,文献DOI怎么找? 1306573
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565