Progressive Dual-Branch Network for Low-Light Image Enhancement

人工智能 计算机科学 计算机视觉 特征(语言学) 块(置换群论) 核(代数) 模式识别(心理学) 数学 几何学 语言学 组合数学 哲学
作者
Hengshuai Cui,Jinjiang Li,Zhen Hua,Linwei Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-18 被引量:5
标识
DOI:10.1109/tim.2022.3216880
摘要

Images captured in low light and backlit conditions are characterized by low brightness, low contrast, and varying degrees of degradation. Simply enhancing image contrast will fully expose hidden noise and color distortion, affecting people's subjective visual perception and performance in other application scenarios. In order to improve the loss of details, color imbalance and artifacts in the enhanced images, we propose a progressive dual branch network(PDBNet) for low-light image enhancement. In this paper, an assisted recovery module(ARM) is designed by exploiting the hybrid correlation and feature complementarity between the inverted image and the low-light image. Feature information at different scales is progressively extracted by cascading multiple ARMs. Considering the network execution efficiency and the amount of parameters, we use depthwise separable convolution(DSC) and asymmetric assisted recovery module(ARM) to improve the computational efficiency of the model. To reduce the degradation caused by enhancing image contrast, the introduction of the large kernel attention(LKA) block allows the network to emphasize hidden low-light information regions, effectively suppressing noise and improving color imbalance. In order to effectively fuse the feature information between the inverse image and the low-light image, an attention fusion block(AFB) is designed. AFB can effectively acquire global feature information and re-encode semantic dependencies between channels. Finally, a fusion reconstruction module(FRM) is designed to further refine the feature information and enhance the information flow between networks. After sufficient qualitative and quantitative experiments in publicly available low-light image datasets, it is known that our method has better visual quality and metric evaluation scores than other state-of-the-art low-light image enhancement methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小二郎应助房山季鸟猴采纳,获得10
1秒前
2秒前
can完成签到,获得积分10
2秒前
zhongzihao完成签到,获得积分20
3秒前
小蘑菇应助MaYue采纳,获得10
3秒前
3秒前
孙福禄应助机智的然然采纳,获得10
3秒前
GooJohn发布了新的文献求助10
4秒前
NexusExplorer应助杜兰特工队采纳,获得10
5秒前
5秒前
5秒前
6秒前
FashionBoy应助鲤跃采纳,获得10
7秒前
阳光c完成签到 ,获得积分10
7秒前
威武的手链完成签到,获得积分20
8秒前
sxr完成签到,获得积分10
8秒前
zhongzihao发布了新的文献求助10
9秒前
9秒前
在水一方应助闪闪采纳,获得10
9秒前
Jay发布了新的文献求助10
10秒前
灰灰子发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
小丑鱼儿发布了新的文献求助10
13秒前
XYN1发布了新的文献求助10
13秒前
16秒前
16秒前
LiuLiu完成签到,获得积分10
17秒前
樱桃小热巴完成签到 ,获得积分10
17秒前
18秒前
18秒前
不低头完成签到,获得积分10
18秒前
大鱼完成签到,获得积分10
19秒前
19秒前
XYN1完成签到,获得积分10
19秒前
MaYue发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035