亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Progressive Dual-Branch Network for Low-Light Image Enhancement

人工智能 计算机科学 计算机视觉 特征(语言学) 块(置换群论) 核(代数) 模式识别(心理学) 数学 几何学 语言学 组合数学 哲学
作者
Hengshuai Cui,Jinjiang Li,Zhen Hua,Linwei Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-18 被引量:17
标识
DOI:10.1109/tim.2022.3216880
摘要

Images captured in low light and backlit conditions are characterized by low brightness, low contrast, and varying degrees of degradation. Simply enhancing image contrast will fully expose hidden noise and color distortion, affecting people's subjective visual perception and performance in other application scenarios. In order to improve the loss of details, color imbalance and artifacts in the enhanced images, we propose a progressive dual branch network(PDBNet) for low-light image enhancement. In this paper, an assisted recovery module(ARM) is designed by exploiting the hybrid correlation and feature complementarity between the inverted image and the low-light image. Feature information at different scales is progressively extracted by cascading multiple ARMs. Considering the network execution efficiency and the amount of parameters, we use depthwise separable convolution(DSC) and asymmetric assisted recovery module(ARM) to improve the computational efficiency of the model. To reduce the degradation caused by enhancing image contrast, the introduction of the large kernel attention(LKA) block allows the network to emphasize hidden low-light information regions, effectively suppressing noise and improving color imbalance. In order to effectively fuse the feature information between the inverse image and the low-light image, an attention fusion block(AFB) is designed. AFB can effectively acquire global feature information and re-encode semantic dependencies between channels. Finally, a fusion reconstruction module(FRM) is designed to further refine the feature information and enhance the information flow between networks. After sufficient qualitative and quantitative experiments in publicly available low-light image datasets, it is known that our method has better visual quality and metric evaluation scores than other state-of-the-art low-light image enhancement methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
娅娃儿完成签到 ,获得积分10
6秒前
刘玉欣完成签到 ,获得积分10
9秒前
haru完成签到,获得积分20
11秒前
12秒前
zhang发布了新的文献求助10
15秒前
SciGPT应助Hayden_peng采纳,获得10
20秒前
失眠大雁完成签到,获得积分10
21秒前
pihriyyy完成签到,获得积分10
24秒前
风中的碧空完成签到,获得积分10
24秒前
Hayden_peng完成签到,获得积分10
28秒前
28秒前
Hayden_peng发布了新的文献求助10
33秒前
39秒前
愉快的夏天完成签到,获得积分10
45秒前
xldongcn完成签到 ,获得积分10
53秒前
54秒前
56秒前
渡边彻发布了新的文献求助30
1分钟前
尊敬的臻发布了新的文献求助10
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
宋璐宏发布了新的文献求助10
1分钟前
彭于晏应助渡边彻采纳,获得30
1分钟前
裴仰纳完成签到 ,获得积分10
1分钟前
Panther完成签到,获得积分10
1分钟前
1分钟前
HS完成签到,获得积分10
1分钟前
Ava应助山复尔尔采纳,获得10
1分钟前
无极微光应助何YI采纳,获得20
1分钟前
沐阳发布了新的文献求助10
1分钟前
打打应助sunny采纳,获得10
1分钟前
科研通AI6.2应助zhang采纳,获得10
1分钟前
dkx完成签到 ,获得积分10
1分钟前
科研通AI6.2应助宋璐宏采纳,获得10
1分钟前
烟花应助S1mon采纳,获得10
1分钟前
睡不醒的xx完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
把狗摆反应助科研通管家采纳,获得30
1分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880388
求助须知:如何正确求助?哪些是违规求助? 6571329
关于积分的说明 15689650
捐赠科研通 5000037
什么是DOI,文献DOI怎么找? 2694156
邀请新用户注册赠送积分活动 1635983
关于科研通互助平台的介绍 1593410