亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A designer’s challenge: Unraveling the architected structure of deep sea sponges for lattice mechanical metamaterials

超材料 有限元法 格子(音乐) 机械工程 仿生学 非线性系统 纳米技术 计算机科学 材料科学 结构工程 工程类 光电子学 物理 声学 量子力学
作者
Zacharias Vangelatos,M. Erden Yildizdag,Costas P. Grigoropoulos
出处
期刊:Extreme Mechanics Letters [Elsevier]
卷期号:61: 102013-102013 被引量:18
标识
DOI:10.1016/j.eml.2023.102013
摘要

Biomimetic and Bioinspired designs have been investigated due to the advances in modeling, mechanics and experimental characterization of structural features of living organisms. To accomplish bioinspiration for fields such as robotics, adhesives and smart materials, it is required to comprehend how Nature accomplished enhanced mechanical behavior. Among the plethora of complex organisms spanning at different lengthscales, the deep sea sponge Euplectella Aspergillum has been of particular interest due to its lattice structure that can be the framework to design mechanical metamaterials. However, despite its intriguing morphology, constraints in the fabrication and modeling of scalable and nonuniform materials has hindered the study of its mechanical performance and how to harness it. Moreover, a comprehensive FEA model that encompasses the whole spectrum of its constitutive and structural performance has not been reported. In this study, it is aimed to characterize and model the mechanical behavior of this sponge from a structural standpoint. Utilizing various experimental techniques, an FEA mechanical model is developed to study the nonlinear buckling analysis of the sponge's lattice structure and its resilience to failure. Finally, through topology optimization and sensitivity analysis, a new mechanical metamaterial is proposed. Our results elucidate how mechanical characterization and FEA modeling can be employed for a deeper understanding of Nature's tailored hierarchy and the design of metamaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daomaihu完成签到,获得积分20
13秒前
顾矜应助刚刚好-LG采纳,获得30
46秒前
56秒前
小新小新完成签到 ,获得积分10
57秒前
jj发布了新的文献求助10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
jj完成签到,获得积分20
1分钟前
1分钟前
大个应助盐咸小狗采纳,获得10
1分钟前
xl发布了新的文献求助10
1分钟前
科研通AI2S应助jj采纳,获得10
1分钟前
1分钟前
盐咸小狗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
luyang发布了新的文献求助10
2分钟前
2分钟前
Wenhao Zhao发布了新的文献求助10
2分钟前
FashionBoy应助ccczzz采纳,获得30
2分钟前
小蘑菇应助xlj采纳,获得10
2分钟前
Wenhao Zhao完成签到,获得积分10
2分钟前
2分钟前
xlj发布了新的文献求助10
2分钟前
2分钟前
ccczzz发布了新的文献求助30
2分钟前
ccczzz发布了新的文献求助10
2分钟前
科研通AI2S应助ccczzz采纳,获得30
2分钟前
CJY完成签到 ,获得积分10
2分钟前
li完成签到 ,获得积分10
2分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
斯文败类应助连安阳采纳,获得10
3分钟前
刚刚好-LG发布了新的文献求助30
3分钟前
3分钟前
连安阳发布了新的文献求助10
3分钟前
刚刚好-LG完成签到,获得积分10
3分钟前
连安阳完成签到,获得积分10
3分钟前
bkagyin应助大意的如柏采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292483
求助须知:如何正确求助?哪些是违规求助? 4443028
关于积分的说明 13830802
捐赠科研通 4326464
什么是DOI,文献DOI怎么找? 2374874
邀请新用户注册赠送积分活动 1370217
关于科研通互助平台的介绍 1334715