Deep learning to quantify the pace of brain aging in relation to neurocognitive changes

神经认知 脑老化 队列 心理学 卷积神经网络 认知 神经影像学 神经科学 纵向研究 衰老的大脑 医学 听力学 老年学 内科学 人工智能 计算机科学 病理
作者
Chenzhong Yin,Phoebe Imms,Nahian F. Chowdhury,Nikhil N. Chaudhari,Heng Ping,Haoqing Wang,Paul Bogdan,Andrei Irimia,Michael D. Weiner,Paul Aisen,Ronald Petersen,Clifford R. Jack,William J. Jagust,Susan Landau,Mónica Rivera Mindt,Ozioma C. Okonkwo,Leslie M. Shaw,Edward B. Lee,Arthur W. Toga,Laurel Beckett
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (10) 被引量:2
标识
DOI:10.1073/pnas.2413442122
摘要

Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P , however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十九集完成签到 ,获得积分10
刚刚
李总要发财小苏发文章完成签到,获得积分10
刚刚
科研通AI6.1应助贪玩飞珍采纳,获得10
1秒前
1秒前
搜集达人应助tidongzhiwu采纳,获得10
1秒前
冷月fan发布了新的文献求助10
2秒前
Eraser完成签到,获得积分10
2秒前
科研通AI6.1应助星期五采纳,获得10
3秒前
眼睛大樱桃完成签到,获得积分10
5秒前
5秒前
6秒前
小红书求接接接接一篇完成签到,获得积分10
7秒前
8秒前
9秒前
无限青柏发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
komisan完成签到 ,获得积分10
13秒前
caoxiang发布了新的文献求助20
15秒前
15秒前
贪玩飞珍发布了新的文献求助10
15秒前
小二郎应助yue采纳,获得10
16秒前
tidongzhiwu发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
可爱依凝应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734724
求助须知:如何正确求助?哪些是违规求助? 5355901
关于积分的说明 15327581
捐赠科研通 4879260
什么是DOI,文献DOI怎么找? 2621796
邀请新用户注册赠送积分活动 1571031
关于科研通互助平台的介绍 1527760