Deep learning to quantify the pace of brain aging in relation to neurocognitive changes

神经认知 脑老化 队列 心理学 卷积神经网络 认知 神经影像学 神经科学 纵向研究 衰老的大脑 医学 听力学 老年学 内科学 人工智能 计算机科学 病理
作者
Chenzhong Yin,Phoebe Imms,Nahian F. Chowdhury,Nikhil N. Chaudhari,Heng Ping,Haoqing Wang,Paul Bogdan,Andrei Irimia,Michael D. Weiner,Paul Aisen,Ronald Petersen,Clifford R. Jack,William J. Jagust,Susan Landau,Mónica Rivera Mindt,Ozioma C. Okonkwo,Leslie M. Shaw,Edward B. Lee,Arthur W. Toga,Laurel Beckett
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (10) 被引量:1
标识
DOI:10.1073/pnas.2413442122
摘要

Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P , however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
灿华完成签到 ,获得积分10
1秒前
RR完成签到,获得积分10
2秒前
pups发布了新的文献求助10
2秒前
2秒前
慕青应助zhang采纳,获得20
2秒前
linmo发布了新的文献求助10
2秒前
NexusExplorer应助pkaq采纳,获得10
2秒前
可靠的青完成签到,获得积分10
2秒前
宋宋发布了新的文献求助10
2秒前
无聊的伊完成签到,获得积分10
3秒前
3秒前
小二郎应助Voloid采纳,获得20
3秒前
4秒前
4秒前
4秒前
豆包完成签到,获得积分10
4秒前
iNk应助一只猪采纳,获得20
4秒前
乐乐应助何姗悦采纳,获得10
4秒前
5秒前
5秒前
zd完成签到,获得积分10
5秒前
6秒前
小蘑菇应助Jan采纳,获得10
8秒前
8秒前
shrek完成签到,获得积分10
8秒前
LaTeXer应助Leo采纳,获得50
8秒前
save发布了新的文献求助10
9秒前
WS完成签到,获得积分10
9秒前
余晖霞光发布了新的文献求助10
9秒前
OKOK发布了新的文献求助10
10秒前
聪慧芷巧发布了新的文献求助10
10秒前
ASHES发布了新的文献求助30
10秒前
李健的小迷弟应助程赪采纳,获得10
10秒前
10秒前
11秒前
11秒前
十字花科发布了新的文献求助10
12秒前
12秒前
FashionBoy应助tkx是流氓兔采纳,获得30
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3495998
关于积分的说明 11080354
捐赠科研通 3226418
什么是DOI,文献DOI怎么找? 1783846
邀请新用户注册赠送积分活动 867937
科研通“疑难数据库(出版商)”最低求助积分说明 800978