聚乙烯醇
纤维素
材料科学
肿胀 的
复合数
甲基纤维素
化学工程
纳米晶
自愈水凝胶
纤维
吸水率
复合材料
乙烯醇
高分子化学
聚合物
纳米技术
工程类
作者
Praewa Promdontree,Pakpoom Kheolamai,Artjima Ounkaew,Ravin Narain,Sarute Ummartyotin
出处
期刊:Polymers
[Multidisciplinary Digital Publishing Institute]
日期:2023-10-16
卷期号:15 (20): 4098-4098
被引量:7
标识
DOI:10.3390/polym15204098
摘要
Cellulose nanocrystals (CNCs) were successfully extracted and purified from hemp using an alkaline treatment and bleaching process and subsequently used in conjunction with polyvinyl alcohol to form a composite hydrogel. Cellulose nanocrystals (1–10% (w/v)) were integrated into polyvinyl alcohol, and sodium tetraborate (borax) was employed as a crosslinking agent. Due to the small number of cellulose nanocrystals, no significant peak change was observed in the FT-IR spectra compared to pristine polyvinyl alcohol. The porosity was created upon the removal of the water molecules, and the material was thermally stable up to 200 °C. With the presence of cellulose nanocrystals, the melting temperature was slightly shifted to a higher temperature, while the glass transition temperature remained practically unchanged. The swelling behavior was examined for 180 min in deionized water and PBS solution (pH 7.4) at 37 °C. The degree of swelling of the composite with cellulose nanocrystals was found to be higher than that of pristine PVA hydrogel. The cell viability (%) of the prepared hydrogel with different proportions of cellulose nanocrystals was higher than that of pristine PVA hydrogel. Based on the results, the prepared composite hydrogels from cellulose nanocrystals extracted from hemp and polyvinyl alcohol were revealed to be an excellent candidate for scaffold material for medical usage.
科研通智能强力驱动
Strongly Powered by AbleSci AI