亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Emotion recognition in EEG signals using deep learning methods: A review

脑电图 计算机科学 人工智能 情绪分类 情绪识别 信号(编程语言) 模式识别(心理学) 语音识别 心理学 神经科学 程序设计语言
作者
Mahboobeh Jafari,Afshin Shoeibi,Marjane Khodatars,Sara Bagherzadeh,Ahmad Shalbaf,David López-García,J. M. Górriz,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107450-107450 被引量:171
标识
DOI:10.1016/j.compbiomed.2023.107450
摘要

Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的香菱完成签到 ,获得积分10
3秒前
9秒前
13秒前
桃子e发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
21秒前
37秒前
47秒前
难过忆山发布了新的文献求助10
49秒前
英姑应助Zz采纳,获得10
50秒前
所所应助科研通管家采纳,获得10
56秒前
量子星尘发布了新的文献求助10
1分钟前
hq完成签到 ,获得积分10
1分钟前
1分钟前
poki完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2分钟前
天天快乐应助Fluoxtine采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
twk发布了新的文献求助10
3分钟前
3分钟前
研友_VZG7GZ应助粗暴的坤采纳,获得10
4分钟前
4分钟前
科研通AI6.1应助jyy采纳,获得10
4分钟前
牛马研究生完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
思源应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
马成双完成签到 ,获得积分10
5分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
江梁发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617