Emotion recognition in EEG signals using deep learning methods: A review

脑电图 计算机科学 人工智能 情绪分类 情绪识别 信号(编程语言) 模式识别(心理学) 语音识别 心理学 神经科学 程序设计语言
作者
Mahboobeh Jafari,Afshin Shoeibi,Marjane Khodatars,Sara Bagherzadeh,Ahmad Shalbaf,David López-García,J. M. Górriz,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107450-107450 被引量:51
标识
DOI:10.1016/j.compbiomed.2023.107450
摘要

Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanfan完成签到,获得积分10
刚刚
upupup完成签到 ,获得积分10
刚刚
复杂觅海发布了新的文献求助10
刚刚
张可发布了新的文献求助10
刚刚
面包康完成签到 ,获得积分10
1秒前
2秒前
2秒前
刘老哥6发布了新的文献求助10
2秒前
斯文败类应助xul279采纳,获得10
2秒前
Vyasa完成签到,获得积分10
2秒前
深情安青应助zhu采纳,获得10
3秒前
爆米花应助xyzlancet采纳,获得10
4秒前
Regine完成签到,获得积分10
4秒前
4秒前
5秒前
福荔发布了新的文献求助10
5秒前
英俊的铭应助Liu Xiaojing采纳,获得10
5秒前
凸迩丝儿完成签到,获得积分10
6秒前
6秒前
8秒前
深情安青应助张可采纳,获得10
8秒前
FZUer发布了新的文献求助10
8秒前
8秒前
小红发布了新的文献求助10
8秒前
科研通AI2S应助伟大人物采纳,获得10
9秒前
尊敬的冥幽完成签到,获得积分10
9秒前
9秒前
10秒前
阿腾发布了新的文献求助10
11秒前
11秒前
狂奔的翔发布了新的文献求助10
12秒前
小白完成签到,获得积分20
13秒前
小夕完成签到,获得积分10
14秒前
14秒前
Simon发布了新的文献求助10
14秒前
坚定黑夜发布了新的文献求助10
15秒前
lynn完成签到 ,获得积分10
15秒前
某某某发布了新的文献求助10
15秒前
16秒前
小福宝完成签到,获得积分10
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180636
求助须知:如何正确求助?哪些是违规求助? 2830962
关于积分的说明 7981889
捐赠科研通 2492629
什么是DOI,文献DOI怎么找? 1329721
科研通“疑难数据库(出版商)”最低求助积分说明 635798
版权声明 602954