Emotion recognition in EEG signals using deep learning methods: A review

脑电图 计算机科学 人工智能 情绪分类 情绪识别 信号(编程语言) 模式识别(心理学) 语音识别 心理学 神经科学 程序设计语言
作者
Mahboobeh Jafari,Afshin Shoeibi,Marjane Khodatars,Sara Bagherzadeh,Ahmad Shalbaf,David López-García,J. M. Górriz,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107450-107450 被引量:75
标识
DOI:10.1016/j.compbiomed.2023.107450
摘要

Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汕头凯奇完成签到,获得积分10
刚刚
hjkk完成签到,获得积分10
刚刚
大胆的若南关注了科研通微信公众号
刚刚
大胆的若南关注了科研通微信公众号
刚刚
刚刚
深情安青应助尔蝶采纳,获得10
刚刚
dushicheng发布了新的文献求助10
1秒前
1秒前
挖药狂魔完成签到,获得积分10
1秒前
bkagyin应助松果采纳,获得10
1秒前
Yeah完成签到,获得积分10
2秒前
2秒前
James完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
wsq完成签到,获得积分10
2秒前
喂喂喂威给喂喂喂威的求助进行了留言
3秒前
cheng发布了新的文献求助10
3秒前
浩浩浩完成签到,获得积分10
3秒前
早爹完成签到 ,获得积分10
3秒前
Owen应助christinaMarsh采纳,获得30
3秒前
秦磊完成签到,获得积分10
4秒前
a2271559577发布了新的文献求助30
5秒前
5秒前
AAA完成签到,获得积分10
5秒前
乐乐应助Liangc333采纳,获得10
6秒前
火星上的冬云完成签到,获得积分20
6秒前
6秒前
Porifera完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
美丽星期五完成签到,获得积分10
6秒前
6秒前
团团完成签到,获得积分10
6秒前
啾一口香菜完成签到 ,获得积分10
7秒前
乐乐应助糟糕的洋葱采纳,获得10
7秒前
影子完成签到,获得积分20
7秒前
龙傲天完成签到,获得积分10
7秒前
chaosyw完成签到,获得积分10
8秒前
啊啦啦发布了新的文献求助50
9秒前
灵巧晓山完成签到,获得积分10
9秒前
走弓完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666840
求助须知:如何正确求助?哪些是违规求助? 3225706
关于积分的说明 9764854
捐赠科研通 2935572
什么是DOI,文献DOI怎么找? 1607763
邀请新用户注册赠送积分活动 759353
科研通“疑难数据库(出版商)”最低求助积分说明 735287