脑电图
计算机科学
人工智能
情绪分类
情绪识别
信号(编程语言)
模式识别(心理学)
语音识别
心理学
神经科学
程序设计语言
作者
Mahboobeh Jafari,Afshin Shoeibi,Marjane Khodatars,Sara Bagherzadeh,Ahmad Shalbaf,David López-García,J. M. Górriz,U. Rajendra Acharya
标识
DOI:10.1016/j.compbiomed.2023.107450
摘要
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI