Detection of Road Potholes by Applying Convolutional Neural Network Method Based on Road Vibration Data

坑洞(地质) 加速度计 计算机科学 卷积神经网络 背景(考古学) 全球定位系统 陀螺仪 路面 振动 实时计算 人工智能 遥感 工程类 电信 地质学 岩石学 土木工程 物理 量子力学 航空航天工程 操作系统 古生物学
作者
Furkan ÖZOĞLU,Türkay Gökgöz
出处
期刊:Sensors [MDPI AG]
卷期号:23 (22): 9023-9023 被引量:5
标识
DOI:10.3390/s23229023
摘要

In the context of road transportation, detecting road surface irregularities, particularly potholes, is of paramount importance due to their implications for driving comfort, transportation costs, and potential accidents. This study presents the development of a system for pothole detection using vibration sensors and the Global Positioning System (GPS) integrated within smartphones, without the need for additional onboard devices in vehicles incurring extra costs. In the realm of vibration-based road anomaly detection, a novel approach employing convolutional neural networks (CNNs) is introduced, breaking new ground in this field. An iOS-based application was designed for the acquisition and transmission of road vibration data using the built-in three-axis accelerometer and gyroscope of smartphones. Analog road data were transformed into pixel-based visuals, and various CNN models with different layer configurations were developed. The CNN models achieved a commendable accuracy rate of 93.24% and a low loss value of 0.2948 during validation, demonstrating their effectiveness in pothole detection. To evaluate the performance further, a two-stage validation process was conducted. In the first stage, the potholes along predefined routes were classified based on the labeled results generated by the CNN model. In the second stage, observations and detections during the field study were used to identify road potholes along the same routes. Supported by the field study results, the proposed method successfully detected road potholes with an accuracy ranging from 80% to 87%, depending on the specific route.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
可爱的函函应助chant采纳,获得10
4秒前
5秒前
爱笑蛋挞完成签到 ,获得积分10
5秒前
kjj发布了新的文献求助100
6秒前
John发布了新的文献求助10
6秒前
skkr发布了新的文献求助30
6秒前
7秒前
8秒前
Bighen完成签到 ,获得积分10
10秒前
10秒前
拓跋涵易发布了新的文献求助10
11秒前
12秒前
所所应助skkr采纳,获得10
13秒前
驿寄梅花发布了新的文献求助10
13秒前
14秒前
传奇3应助哎呀妈呀采纳,获得10
15秒前
19秒前
SciGPT应助waws采纳,获得10
19秒前
mouxq发布了新的文献求助10
20秒前
21秒前
21秒前
驿寄梅花完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
23秒前
哎呀妈呀发布了新的文献求助10
24秒前
auguste发布了新的文献求助10
25秒前
11完成签到,获得积分20
26秒前
一笑倾城发布了新的文献求助10
28秒前
zho发布了新的文献求助10
28秒前
29秒前
自渡发布了新的文献求助10
29秒前
yoyo完成签到,获得积分10
30秒前
IKUN发布了新的文献求助20
31秒前
yyy完成签到 ,获得积分10
31秒前
11发布了新的文献求助10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798