Detection of Road Potholes by Applying Convolutional Neural Network Method Based on Road Vibration Data

坑洞(地质) 加速度计 计算机科学 卷积神经网络 背景(考古学) 全球定位系统 陀螺仪 路面 振动 实时计算 人工智能 遥感 工程类 电信 地质学 岩石学 土木工程 物理 量子力学 航空航天工程 操作系统 古生物学
作者
Furkan ÖZOĞLU,Türkay Gökgöz
出处
期刊:Sensors [MDPI AG]
卷期号:23 (22): 9023-9023 被引量:5
标识
DOI:10.3390/s23229023
摘要

In the context of road transportation, detecting road surface irregularities, particularly potholes, is of paramount importance due to their implications for driving comfort, transportation costs, and potential accidents. This study presents the development of a system for pothole detection using vibration sensors and the Global Positioning System (GPS) integrated within smartphones, without the need for additional onboard devices in vehicles incurring extra costs. In the realm of vibration-based road anomaly detection, a novel approach employing convolutional neural networks (CNNs) is introduced, breaking new ground in this field. An iOS-based application was designed for the acquisition and transmission of road vibration data using the built-in three-axis accelerometer and gyroscope of smartphones. Analog road data were transformed into pixel-based visuals, and various CNN models with different layer configurations were developed. The CNN models achieved a commendable accuracy rate of 93.24% and a low loss value of 0.2948 during validation, demonstrating their effectiveness in pothole detection. To evaluate the performance further, a two-stage validation process was conducted. In the first stage, the potholes along predefined routes were classified based on the labeled results generated by the CNN model. In the second stage, observations and detections during the field study were used to identify road potholes along the same routes. Supported by the field study results, the proposed method successfully detected road potholes with an accuracy ranging from 80% to 87%, depending on the specific route.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶子发布了新的文献求助10
1秒前
orangel完成签到,获得积分10
2秒前
半壶月色半边天完成签到 ,获得积分10
3秒前
tmpstlml发布了新的文献求助10
3秒前
4秒前
4秒前
不安饼干完成签到 ,获得积分10
6秒前
活泼的飞鸟完成签到,获得积分10
6秒前
7秒前
xuyun发布了新的文献求助10
7秒前
7秒前
zzcres完成签到,获得积分10
9秒前
eeeee完成签到 ,获得积分10
9秒前
乐观德地完成签到,获得积分10
10秒前
大个应助yf_zhu采纳,获得10
10秒前
llk发布了新的文献求助10
11秒前
一只大肥猫完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
13秒前
13秒前
科研通AI5应助GGG采纳,获得10
14秒前
14秒前
16秒前
Ann发布了新的文献求助20
16秒前
16秒前
buno应助duxinyue采纳,获得10
16秒前
xlj发布了新的文献求助10
17秒前
17秒前
可爱的函函应助zhen采纳,获得10
18秒前
研友_VZG7GZ应助dingdong采纳,获得10
19秒前
19秒前
李成恩完成签到 ,获得积分10
20秒前
心碎的黄焖鸡完成签到 ,获得积分10
20秒前
琪琪扬扬发布了新的文献求助10
21秒前
22秒前
22秒前
宗磬完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808