NCH-DDA: Neighborhood contrastive learning heterogeneous network for drug–disease association prediction

计算机科学 机器学习 人工智能 分拆(数论) 联想(心理学) 相似性(几何) 特征(语言学) 特征学习 特征提取 数学 语言学 认识论 组合数学 图像(数学) 哲学
作者
Peiliang Zhang,Chao Che,Bo Jin,Jingling Yuan,Ruixin Li,Yongjun Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121855-121855 被引量:15
标识
DOI:10.1016/j.eswa.2023.121855
摘要

Exploring new therapeutic diseases for existing drugs plays an essential role in reducing drug development costs. However, existing methods for predicting drug–disease association (DDA) lack fusion to multi-neighborhood information, which limits their ability to generalize and forces them to rely on prior knowledge. To this end, we propose a novel DDA model called the Neighborhood Contrastive Learning Heterogeneous Networks (NCH-DDA). NCH-DDA uses both single-neighborhood and multi-neighborhood feature extraction modules to extract important features of drugs and diseases in parallel from multiple potential spaces, such as heterogeneous networks and similarity networks. NCH-DDA fuses single-neighborhood and multi-neighborhood features using contrastive learning to enhance information interaction in different neighborhood spaces, ultimately obtaining universal domain features of drugs and diseases. NCH-DDA uses a combination of predictive loss and triplet loss to reduce dependence on prior knowledge. In different partition schemes of multiple datasets, NCH-DDA achieved the best performance in predicting DDA, outperforming several current state-of-the-art methods. Moreover, NCH-DDA demonstrated better performance in experiments on data sparsity and drug repositioning for Alzheimer's disease, indicating its greater potential in DDA prediction with sparse omics data and drug repositioning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
有魅力书雪完成签到,获得积分10
3秒前
yunyueqixun完成签到 ,获得积分20
3秒前
邢文瑞发布了新的文献求助10
4秒前
鳗鱼冰薇完成签到 ,获得积分10
5秒前
蓝桉完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
深情安青应助学术草履虫采纳,获得10
8秒前
10秒前
yunyueqixun关注了科研通微信公众号
10秒前
12秒前
小马甲应助鲤鱼寒荷采纳,获得10
12秒前
13秒前
niuniuniu完成签到,获得积分10
13秒前
星辰大海应助YuJianQiao采纳,获得10
13秒前
Pinkie发布了新的文献求助10
14秒前
疯狂的海亦完成签到,获得积分10
15秒前
16秒前
李沐唅发布了新的文献求助10
16秒前
16秒前
16秒前
小代发布了新的文献求助10
18秒前
18秒前
Cristina2024完成签到,获得积分10
19秒前
赵李锋完成签到,获得积分10
21秒前
21秒前
锦鲤发布了新的文献求助10
22秒前
年轻的大炮完成签到,获得积分10
23秒前
23秒前
be发布了新的文献求助10
24秒前
HKL完成签到 ,获得积分10
25秒前
26秒前
lili完成签到 ,获得积分10
27秒前
28秒前
理来服完成签到,获得积分10
31秒前
31秒前
Mankind完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963