A preoperative CT-based deep learning radiomics model in predicting the stage, size, grade and necrosis score and outcome in localized clear cell renal cell carcinoma: A multicenter study

医学 肾透明细胞癌 队列 接收机工作特性 肾细胞癌 一致性 无线电技术 内科学 列线图 阶段(地层学) 肿瘤科 放射科 古生物学 生物
作者
Pei Nie,Shihe Liu,Ruizhi Zhou,Xiaoli Li,Kaiyue Zhi,Yanmei Wang,Zhengjun Dai,Lianzi Zhao,Ning Wang,Xia Zhao,Xianjun Li,Nan Cheng,Yicong Wang,Chengcheng Chen,Yuchao Xu,Guangjie Yang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:166: 111018-111018 被引量:10
标识
DOI:10.1016/j.ejrad.2023.111018
摘要

The Stage, Size, Grade and Necrosis (SSIGN) score is the most commonly used prognostic model in clear cell renal cell carcinoma (ccRCC) patients. It is a great challenge to preoperatively predict SSIGN score and outcome of ccRCC patients. The aim of this study was to develop and validate a CT-based deep learning radiomics model (DLRM) for predicting SSIGN score and outcome in localized ccRCC.A multicenter 784 (training cohort/ test 1 cohort / test 2 cohort, 475/204/105) localized ccRCC patients were enrolled. Radiomics signature (RS), deep learning signature (DLS), and DLRM incorporating radiomics and deep learning features were developed for predicting SSIGN score. Model performance was evaluated with area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival analysis was used to assess the association of the model-predicted SSIGN with cancer-specific survival (CSS). Harrell's concordance index (C-index) was calculated to assess the CSS predictive accuracy of these models.The DLRM achieved higher micro-average/macro-average AUCs (0.913/0.850, and 0.969/0.942, respectively in test 1 cohort and test 2 cohort) than the RS and DLS did for the prediction of SSIGN score. The CSS showed significant differences among the DLRM-predicted risk groups. The DLRM achieved higher C-indices (0.827 and 0.824, respectively in test 1 cohort and test 2 cohort) than the RS and DLS did in predicting CSS for localized ccRCC patients.The DLRM can accurately predict the SSIGN score and outcome in localized ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyy完成签到 ,获得积分10
刚刚
accelia完成签到,获得积分10
刚刚
hkh发布了新的文献求助10
1秒前
1秒前
李爱国应助Desire采纳,获得10
1秒前
典雅涵瑶完成签到,获得积分10
1秒前
Cris完成签到,获得积分10
1秒前
2秒前
领导范儿应助sunyanghu369采纳,获得10
2秒前
pengyang完成签到 ,获得积分10
3秒前
Donby完成签到,获得积分10
3秒前
ShengQ完成签到,获得积分10
3秒前
4秒前
4秒前
没所谓完成签到,获得积分10
4秒前
5秒前
科研通AI5应助ardejiang采纳,获得10
5秒前
caixia完成签到 ,获得积分10
5秒前
月下共酌完成签到,获得积分10
5秒前
机灵瑛完成签到,获得积分20
5秒前
kk完成签到,获得积分10
5秒前
ocean发布了新的文献求助10
5秒前
细心秀发发布了新的文献求助10
6秒前
kkkkk完成签到,获得积分10
6秒前
候月发布了新的文献求助10
6秒前
犹豫的初丹完成签到,获得积分10
6秒前
天天笑完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
顺顺尼发布了新的文献求助10
7秒前
8秒前
沐言完成签到,获得积分10
8秒前
李君怡完成签到,获得积分10
8秒前
大模型应助vivi采纳,获得10
8秒前
星辉发布了新的文献求助10
9秒前
Hello应助热情饼干采纳,获得10
9秒前
大力的访云完成签到 ,获得积分10
9秒前
Clover完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077