亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A preoperative CT-based deep learning radiomics model in predicting the stage, size, grade and necrosis score and outcome in localized clear cell renal cell carcinoma: A multicenter study

医学 肾透明细胞癌 队列 接收机工作特性 肾细胞癌 一致性 无线电技术 内科学 列线图 阶段(地层学) 肿瘤科 放射科 古生物学 生物
作者
Pei Nie,Shihe Liu,Ruizhi Zhou,Xiaoli Li,Kaiyue Zhi,Yanmei Wang,Zhengjun Dai,Lianzi Zhao,Ning Wang,Xia Zhao,Xianjun Li,Nan Cheng,Yicong Wang,Chengcheng Chen,Yuchao Xu,Guangjie Yang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:166: 111018-111018 被引量:16
标识
DOI:10.1016/j.ejrad.2023.111018
摘要

The Stage, Size, Grade and Necrosis (SSIGN) score is the most commonly used prognostic model in clear cell renal cell carcinoma (ccRCC) patients. It is a great challenge to preoperatively predict SSIGN score and outcome of ccRCC patients. The aim of this study was to develop and validate a CT-based deep learning radiomics model (DLRM) for predicting SSIGN score and outcome in localized ccRCC.A multicenter 784 (training cohort/ test 1 cohort / test 2 cohort, 475/204/105) localized ccRCC patients were enrolled. Radiomics signature (RS), deep learning signature (DLS), and DLRM incorporating radiomics and deep learning features were developed for predicting SSIGN score. Model performance was evaluated with area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival analysis was used to assess the association of the model-predicted SSIGN with cancer-specific survival (CSS). Harrell's concordance index (C-index) was calculated to assess the CSS predictive accuracy of these models.The DLRM achieved higher micro-average/macro-average AUCs (0.913/0.850, and 0.969/0.942, respectively in test 1 cohort and test 2 cohort) than the RS and DLS did for the prediction of SSIGN score. The CSS showed significant differences among the DLRM-predicted risk groups. The DLRM achieved higher C-indices (0.827 and 0.824, respectively in test 1 cohort and test 2 cohort) than the RS and DLS did in predicting CSS for localized ccRCC patients.The DLRM can accurately predict the SSIGN score and outcome in localized ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
Marciu33发布了新的文献求助10
17秒前
20秒前
上官若男应助默默的板栗采纳,获得10
38秒前
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
小唐完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
chenlc971125完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
loitinsuen完成签到,获得积分10
2分钟前
2分钟前
在水一方应助me采纳,获得10
2分钟前
3分钟前
3分钟前
默默的板栗完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
外向的妍完成签到,获得积分10
3分钟前
走啊走应助绝世高手采纳,获得30
3分钟前
雪白的听寒完成签到 ,获得积分10
3分钟前
慕青应助简单的凡儿采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
曦耀发布了新的文献求助20
5分钟前
黄嘉慧完成签到 ,获得积分10
5分钟前
MGraceLi_sci完成签到,获得积分10
5分钟前
所所应助zhanghua采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924