An interpretable image classification model Combining a fuzzy neural network with a variational autoencoder inspired by the human brain

自编码 人工智能 人工神经网络 图像(数学) 计算机科学 模式识别(心理学) 模糊逻辑 机器学习
作者
Ke Zhang,Wenning Hao,Xiaohan Yu,T. Shao
出处
期刊:Information Sciences [Elsevier BV]
卷期号:661: 119885-119885 被引量:6
标识
DOI:10.1016/j.ins.2023.119885
摘要

Fuzzy neural networks (FNNs) have gained attention for their interpretability and self-learning ability. However, they struggle with interpreting high-dimensional unstructured data and the problem of "rule explosion". To address this, a model called VAE-FNN is proposed, which combines a FNN with a variational autoencoder (VAE). The VAE-FNN simulates the image perception, feature extraction, inductive reasoning, and adjustment learning processes in the human brain. An encoder is used to simulate the visual cortex for extracting features from complex images, reducing the dimensionality, and mitigating the rule explosion problem. The fuzzy neural network classifier (FNNC) simulates the reasoning functions of the parietal and prefrontal cortex in the human brain and achieves interpretable classification based on the encoder's output features. A training algorithm is designed to improve the stability of the FNNC. The VAE-FNN's training method adjusts the feature extraction process based on reconstruction and classification effects, enabling the model to obtain advanced and semantic classification features. Detailed experimental results on two image datasets demonstrate that the proposed model can extract high-level classification features and provide explanations consistent with human intuition while achieving high-precision classification. The experimental results on the other two datasets further validate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
暴躁的豆芽完成签到,获得积分10
4秒前
科研通AI5应助蟹黄味采纳,获得10
4秒前
5秒前
国际戏骨完成签到,获得积分10
6秒前
Yc应助美小美采纳,获得10
7秒前
ArkZ发布了新的文献求助10
7秒前
NexusExplorer应助slj采纳,获得10
7秒前
欣慰的星月完成签到,获得积分10
9秒前
领导范儿应助牧研采纳,获得10
9秒前
10秒前
搜集达人应助Ageha采纳,获得10
11秒前
11秒前
11秒前
13秒前
lxgz发布了新的文献求助10
14秒前
清客完成签到 ,获得积分10
14秒前
蟹黄味完成签到,获得积分20
15秒前
15秒前
国际戏骨发布了新的文献求助10
15秒前
bbr关闭了bbr文献求助
15秒前
16秒前
18秒前
冰魂应助free采纳,获得10
18秒前
fy完成签到,获得积分20
19秒前
上官若男应助清颜采纳,获得10
19秒前
突突兔完成签到 ,获得积分10
21秒前
lily发布了新的文献求助20
21秒前
Ageha发布了新的文献求助10
21秒前
牧研发布了新的文献求助10
22秒前
23秒前
蟹黄味发布了新的文献求助10
23秒前
木木发布了新的文献求助10
24秒前
24秒前
26秒前
ttt发布了新的文献求助10
26秒前
28秒前
fmx完成签到,获得积分10
28秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772710
求助须知:如何正确求助?哪些是违规求助? 3318262
关于积分的说明 10189407
捐赠科研通 3033080
什么是DOI,文献DOI怎么找? 1664050
邀请新用户注册赠送积分活动 796078
科研通“疑难数据库(出版商)”最低求助积分说明 757214