优化设计
遗传算法
计算机科学
人工神经网络
最优化问题
优化算法
数学优化
电磁学
过程(计算)
元优化
工程设计过程
算法
数学
工程类
电子工程
人工智能
机器学习
机械工程
操作系统
作者
Long Chen,Jianan Zhang,Jing Yuan Zhang,Jian Wei You,Tie Jun Cui
标识
DOI:10.1109/nemo56117.2023.10202269
摘要
Conventional metasurface design methods require a large number of full-wave electromagnetic(EM) simulations to obtain the optimal geometric parameter values, resulting in a low optimization efficiency. Recently, coupled mode theory (CMT) and neural networks have been combined (i.e., neuro-CMT) to rapidly predict the EM response of a metasurface and thus accelerate its design optimization process, in which gradient-based optimization methods (i.e., Quasi-Newton) are used to find the optimal geometric parameter values. However, gradient-based optimization methods may not achieve the optimal design when the initial design is far away from the optimal solution. In this paper, we investigate the performance of four optimization algorithms (i.e., quasi-Newton, genetic algorithm, patternsearch, and surrogateopt) in neuro-CMT-based design optimization of metasurfaces, aiming to further improve the optimization efficiency of the neuro-CMT method.
科研通智能强力驱动
Strongly Powered by AbleSci AI