亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Retrospective Detection of Pressure Induced Failures in Continuous Glucose Monitoring Sensors for T1D Management

计算机科学 远程病人监护 连续血糖监测 人工智能 数据挖掘 医学 糖尿病 1型糖尿病 放射科 内分泌学
作者
Elena Idi,Eleonora Manzoni,Andrea Facchinetti,Giovanni Sparacino,Simone Del Favero
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/jbhi.2024.3465893
摘要

Continuous Glucose Monitoring sensors (CGMs) have revolutionized type 1 diabetes (T1D) management. In particular, in several cases, the retrospective analysis of CGM recordings allows clinicians to review and adjust patients' therapy. However, in this set-up, the artifacts that are often present in CGM data could lead to incorrect therapeutic actions. To mitigate this risk, we investigate how to detect one of the most common of these artifacts, the so-called pressure induced sensor attenuations, by means of anomaly detection algorithms. Specifically, these methods belong to the class of unsupervised techniques, which is particularly appealing since it does not require a labeled dataset, hardly available in practice. After having designed five features to highlight the anomalous state of the sensor, 8 different methods (e.g. Isolation Forest and Histogram-based Outlier Score) are assessed both in silico using the UVa/Padova Type 1 Diabetes Simulator and on real data of 36 subjects monitored for about 10 days. In the in silico scenario, the best results are achieved with Isolation Forest, which recognized the 74% of the failures generating on average only 2 false alerts during the whole monitoring time. In real data, Isolation Forest is confirmed to be effective in the detection of failures, achieving a recall of 55% and generating 3 false alarms in 10 days. By allowing to detect more than 50% of the artifacts while discarding only a few portions of correct data in several days of monitoring, the proposed approach could effectively improve the quality of CGM data used by clinicians to retrospectively evaluate and adjust T1D therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助zzz采纳,获得30
47秒前
君寻完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
beloved完成签到 ,获得积分10
1分钟前
demo发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Jay发布了新的文献求助200
3分钟前
任元元完成签到 ,获得积分10
4分钟前
打打应助demo采纳,获得10
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
4分钟前
zzz发布了新的文献求助30
4分钟前
4分钟前
demo发布了新的文献求助10
5分钟前
充电宝应助demo采纳,获得10
5分钟前
Hello应助Destiny采纳,获得10
5分钟前
6分钟前
demo发布了新的文献求助10
6分钟前
moonlin完成签到 ,获得积分10
6分钟前
汉堡包应助LLLLL采纳,获得10
6分钟前
6分钟前
LLLLL发布了新的文献求助10
6分钟前
6分钟前
天天快乐应助demo采纳,获得10
6分钟前
Destiny发布了新的文献求助10
6分钟前
7分钟前
demo发布了新的文献求助10
7分钟前
科研通AI2S应助海苔卷采纳,获得10
7分钟前
桐桐应助科研通管家采纳,获得10
8分钟前
8分钟前
烟花应助qipengchen采纳,获得10
8分钟前
深情安青应助demo采纳,获得10
9分钟前
9分钟前
demo发布了新的文献求助10
9分钟前
Akim应助demo采纳,获得10
10分钟前
小潘哒完成签到 ,获得积分10
10分钟前
10分钟前
Yau完成签到,获得积分10
11分钟前
11分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3369846
求助须知:如何正确求助?哪些是违规求助? 2988489
关于积分的说明 8731816
捐赠科研通 2671390
什么是DOI,文献DOI怎么找? 1463351
科研通“疑难数据库(出版商)”最低求助积分说明 677204
邀请新用户注册赠送积分活动 668398