DeepLab-Rail: semantic segmentation network for railway scenes based on encoder-decoder structure

计算机科学 分割 棱锥(几何) 人工智能 编码器 联营 卷积(计算机科学) 模式识别(心理学) 交叉口(航空) 图像分割 计算机视觉 人工神经网络 操作系统 物理 工程类 光学 航空航天工程
作者
Qingsong Zeng,Linxuan Zhang,Wei Wang,Xiaolong Luo,Yannan Chen
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (04)
标识
DOI:10.1117/1.jei.33.4.043038
摘要

Understanding the perimeter objects and environment changes in railway scenes is crucial for ensuring the safety of train operation. Semantic segmentation is the basis of intelligent perception and scene understanding. Railway scene categories are complex and effective features are challenging to extract. This work proposes a semantic segmentation network DeepLab-Rail based on classic yet effective encoder-decoder structure. It contains a lightweight feature extraction backbone embedded with channel attention (CA) mechanism to keep computational complexity low. To enrich the receptive fields of convolutional modules, we design a parallel and cascade convolution module called compound-atrous spatial pyramid pooling and a combination of dilated convolution ratio is selected through experiments to obtain multi-scale features. To fully use the shallow features and the high-level features, efficient CA mechanism is introduced and also the mixed loss function is designed for the problem of unbalanced label categories of the dataset. Finally, the experimental results on the RailSem19 railway dataset show that the mean intersection over union reaches 65.52% and the PA reaches 88.48%. The segmentation performance of railway confusing facilities, such as signal lights and catenary pillars, has been significantly improved and surpasses other advanced methods to our best knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏完成签到,获得积分20
1秒前
111完成签到 ,获得积分10
2秒前
3秒前
面面发布了新的文献求助10
3秒前
宁阿霜发布了新的文献求助20
3秒前
3秒前
3秒前
cjh发布了新的文献求助10
4秒前
李健应助Feifei133采纳,获得10
4秒前
5秒前
花花发布了新的文献求助10
5秒前
闪闪新梅完成签到,获得积分10
5秒前
翊月完成签到,获得积分10
5秒前
6秒前
怡然的友容完成签到,获得积分10
6秒前
6秒前
7秒前
积极的如之完成签到,获得积分20
8秒前
8秒前
吃的完成签到,获得积分10
8秒前
9秒前
Edward chan发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
舒适以山完成签到,获得积分10
10秒前
11秒前
笨笨翰完成签到,获得积分10
11秒前
幻心发布了新的文献求助150
12秒前
万能图书馆应助Lina采纳,获得10
13秒前
13秒前
14秒前
15秒前
w鲜芋发布了新的文献求助10
15秒前
cincrady完成签到,获得积分10
15秒前
加油站应助肥翟快乐水采纳,获得10
16秒前
田様应助mygod采纳,获得10
17秒前
Ava应助Barry采纳,获得20
17秒前
error完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993