DeepLab-Rail: semantic segmentation network for railway scenes based on encoder-decoder structure

计算机科学 分割 棱锥(几何) 人工智能 编码器 联营 卷积(计算机科学) 模式识别(心理学) 交叉口(航空) 图像分割 计算机视觉 人工神经网络 操作系统 物理 工程类 光学 航空航天工程
作者
Qingsong Zeng,Linxuan Zhang,Yuan Wang,Xiaolong Luo,Yannan Chen
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (04)
标识
DOI:10.1117/1.jei.33.4.043038
摘要

Understanding the perimeter objects and environment changes in railway scenes is crucial for ensuring the safety of train operation. Semantic segmentation is the basis of intelligent perception and scene understanding. Railway scene categories are complex and effective features are challenging to extract. This work proposes a semantic segmentation network DeepLab-Rail based on classic yet effective encoder-decoder structure. It contains a lightweight feature extraction backbone embedded with channel attention (CA) mechanism to keep computational complexity low. To enrich the receptive fields of convolutional modules, we design a parallel and cascade convolution module called compound-atrous spatial pyramid pooling and a combination of dilated convolution ratio is selected through experiments to obtain multi-scale features. To fully use the shallow features and the high-level features, efficient CA mechanism is introduced and also the mixed loss function is designed for the problem of unbalanced label categories of the dataset. Finally, the experimental results on the RailSem19 railway dataset show that the mean intersection over union reaches 65.52% and the PA reaches 88.48%. The segmentation performance of railway confusing facilities, such as signal lights and catenary pillars, has been significantly improved and surpasses other advanced methods to our best knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1122发布了新的文献求助10
刚刚
刚刚
刚刚
专注的铃兰关注了科研通微信公众号
1秒前
脑洞疼应助orange03采纳,获得10
1秒前
明亮孱发布了新的文献求助10
1秒前
1秒前
MiYinZzz完成签到,获得积分10
1秒前
wanci应助微笑的念梦采纳,获得10
2秒前
活力菠萝发布了新的文献求助10
2秒前
wuqian发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
紫沫完成签到,获得积分10
3秒前
凉风发布了新的文献求助10
3秒前
赵卫星完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
科目三应助默默莫莫采纳,获得10
5秒前
田心完成签到,获得积分10
6秒前
6秒前
听听完成签到,获得积分10
6秒前
乐乐应助龙龙采纳,获得10
6秒前
林林发布了新的文献求助10
7秒前
望凌烟完成签到,获得积分10
7秒前
CC发布了新的文献求助10
7秒前
8秒前
柔弱水蓉完成签到,获得积分10
8秒前
8秒前
xxx发布了新的文献求助10
8秒前
8秒前
善学以致用应助风再起时采纳,获得10
8秒前
9秒前
9秒前
李白发布了新的文献求助10
9秒前
自然白安发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552090
求助须知:如何正确求助?哪些是违规求助? 4636914
关于积分的说明 14646590
捐赠科研通 4578819
什么是DOI,文献DOI怎么找? 2511119
邀请新用户注册赠送积分活动 1486301
关于科研通互助平台的介绍 1457502