氧化物
材料科学
阴极
相容性(地球化学)
固态
耐久性
复合数
纳米技术
电化学
电解质
能量密度
快离子导体
电池(电)
工程物理
复合材料
工程类
冶金
电气工程
化学
功率(物理)
电极
物理
物理化学
量子力学
作者
Yaoyu Ren,Timo Danner,Alexandra C. Moy,Martin Finsterbusch,Tanner Hamann,Jan Dippell,Till Fuchs,Marius Müller,Ricky Hoft,André Weber,Larry A. Curtiss,Peter Zapol,Matthew Klenk,Anh T. Ngo,Pallab Barai,Brandon C. Wood,Rongpei Shi,Liwen F. Wan,Tae Wook Heo,M. Engels
标识
DOI:10.1002/aenm.202201939
摘要
Abstract The garnet‐type phase Li 7 La 3 Zr 2 O 12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid‐state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all‐solid‐state LLZO‐based battery that delivers safety, durability, and pack‐level performance characteristics that are unobtainable with state‐of‐the‐art Li‐ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo‐ and heteroionic interfaces in a pure oxide‐based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO‐based SSBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI