Diamond p-FETs using two-dimensional hole gas for high frequency and high voltage complementary circuits

钻石 半导体 光电子学 场效应晶体管 兴奋剂 带隙 材料科学 晶体管 金刚石材料性能 纳米技术 电压 电气工程 复合材料 工程类
作者
Hiroshi Kawarada
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:56 (5): 053001-053001 被引量:16
标识
DOI:10.1088/1361-6463/aca61c
摘要

Abstract Diamond is a wide bandgap semiconductor (bandgap: 5.5 eV). However, through impurity doping, diamond can become a p-type or n-type semiconductor. The minimum resistivity of p-type semiconductor diamond is less than 10 −3 Ω cm, which is no more than that of silicon (Si). In contrast, the minimum resistivity of n-type diamond is as high as 10 3 Ω cm. At present, the development of unipolar devices such as p-channel field-effect transistors (p-FETs) based on diamond is strongly anticipated. When the diamond surface is terminated using hydrogen (H) or Si atoms, the subsurface layer becomes a p-type accumulation layer or inversion layer that forms a two-dimensional hole gas (2DHG), which can then be used as a channel for a FET structure. As a p-FET, the performance of this device approaches that of other wide bandgap semiconductor n-channel FETs. One of the main advantages of this diamond p-FET is that the p-type accumulation or inversion layer is formed natively on the hydrogen terminated (C–H) diamond. This review describes the low metal contact resistance that induces 2DHG formation on the C–H diamond surface, on which negatively charged sites are formed. The negatively charged surface model explains the 2DHG formation clearly based on the FET’s operating mechanism. Recent advances in 2DHG FETs are also discussed, particularly in terms of their current densities of >1 A mm −1 and their high frequency performance. Finally, we propose two types of complementary high-voltage circuit that combine diamond p-FETs with other wide bandgap semiconductor n-FETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助霸气凡白采纳,获得10
刚刚
whuhustwit发布了新的文献求助10
刚刚
刚刚
斯文败类应助Venus采纳,获得10
1秒前
FashionBoy应助plrwe采纳,获得30
1秒前
2秒前
斯文败类应助AnnChen采纳,获得10
2秒前
三哥哥w给三哥哥w的求助进行了留言
6秒前
爬不起来发布了新的文献求助10
7秒前
俭朴的一曲完成签到,获得积分10
7秒前
8秒前
8秒前
Driscoll完成签到 ,获得积分10
9秒前
思源应助苗苗采纳,获得10
10秒前
11秒前
11秒前
Orange应助吹梦成真采纳,获得10
12秒前
12秒前
风趣的芝麻完成签到 ,获得积分10
13秒前
13秒前
嘻嘻发布了新的文献求助10
14秒前
AnnChen发布了新的文献求助10
14秒前
研友_VZG7GZ应助可可采纳,获得30
17秒前
17秒前
赘婿应助Cccc小懒采纳,获得10
18秒前
黑桃Q发布了新的文献求助10
18秒前
AnnChen完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
荼靡落时发布了新的文献求助10
22秒前
大绿豆发布了新的文献求助10
23秒前
23秒前
吹梦成真发布了新的文献求助10
24秒前
25秒前
25秒前
PengHu发布了新的文献求助200
25秒前
感动难摧发布了新的文献求助10
25秒前
26秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673872
求助须知:如何正确求助?哪些是违规求助? 3229298
关于积分的说明 9785160
捐赠科研通 2939933
什么是DOI,文献DOI怎么找? 1611432
邀请新用户注册赠送积分活动 760916
科研通“疑难数据库(出版商)”最低求助积分说明 736344