Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods

计算机科学 电池(电) 机器学习 数据科学 人工智能 物理 量子力学 功率(物理)
作者
Wendi Guo,Zhongchao Sun,Søren Byg Vilsen,Jinhao Meng,Daniel‐Ioan Stroe
出处
期刊:Journal of energy storage [Elsevier]
卷期号:56: 105992-105992 被引量:45
标识
DOI:10.1016/j.est.2022.105992
摘要

Lithium-ion batteries are a popular choice for a wide range of energy storage system applications. The current motivation to improve the robustness of lithium-ion battery applications has stimulated the need for in-depth research into aging effects and the establishment of lifetime prediction models. This paper reviews different combination approaches of physics-based models and data-driven models. The three basic physics-based battery lifetime models are introduced, and requirements and features are compared from an application perspective. Then, state-of-the-art approaches for integrating physics and data-driven methods are systematically reviewed. Flowcharts present each approach to offer the readers a clear understanding. Next, the publication trends are represented by line graphs, and pie charts, including data-driven assisted physical models and physics-guided data-driven, different physical model applications, and data-driven approaches. It is concluded that electrochemical models have great potential to describe complex aging behavior under various conditions. Moreover, machine learning is a promising tool to overcome mechanistic absence and highly nonlinear performance, occupying 78 % of all data-driven methods. Physics-guided data-driven approach started to emerge as an innovative lifetime prediction method after 2020. The application advantages and limitations are compared according to the description of different methods. Furthermore, future perspectives are discussed, with opportunities and challenges. The Prospect of applying physics-guided machine learning looks forward to more inspiration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待思远完成签到,获得积分10
2秒前
huohuo完成签到,获得积分10
3秒前
shihui完成签到 ,获得积分10
5秒前
文静醉易完成签到,获得积分10
6秒前
lxt完成签到 ,获得积分10
6秒前
hanzhangjian完成签到,获得积分10
7秒前
7秒前
小牛同志完成签到,获得积分10
8秒前
zhaowenxian完成签到,获得积分10
8秒前
巧克力手印完成签到,获得积分10
8秒前
晨子完成签到 ,获得积分10
8秒前
CL完成签到,获得积分10
10秒前
AAAAA完成签到 ,获得积分10
11秒前
alwry发布了新的文献求助10
11秒前
动点子智慧完成签到,获得积分10
12秒前
苏青舟完成签到 ,获得积分10
12秒前
zenabia完成签到 ,获得积分10
15秒前
sln完成签到,获得积分10
17秒前
葫芦芦芦完成签到 ,获得积分10
17秒前
稳重书双完成签到,获得积分10
18秒前
18秒前
19秒前
Ruuo616完成签到 ,获得积分10
20秒前
时尚的八宝粥完成签到 ,获得积分10
22秒前
YY发布了新的文献求助10
23秒前
葳蕤苍生完成签到,获得积分10
23秒前
maclogos发布了新的文献求助10
23秒前
zzzwww发布了新的文献求助10
26秒前
Max关闭了Max文献求助
28秒前
yhbk完成签到 ,获得积分10
29秒前
你的微笑我舍不得完成签到,获得积分10
29秒前
why完成签到,获得积分10
30秒前
快乐的雨竹完成签到,获得积分10
30秒前
柒咩咩完成签到 ,获得积分10
32秒前
jinyu完成签到,获得积分10
33秒前
7788完成签到,获得积分10
35秒前
润华完成签到 ,获得积分10
35秒前
晶晶在努力完成签到 ,获得积分10
35秒前
我是雅婷完成签到,获得积分10
35秒前
BINBIN完成签到 ,获得积分10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175