The effect of data fusion on improving the accuracy of olive oil quality measurement

橄榄油 质量(理念) 传感器融合 环境科学 融合 统计 计算机科学 食品科学 化学 人工智能 数学 物理 语言学 量子力学 哲学
作者
Mohammad Zarezadeh,Mohammad Aboonajmi,Mahdi Ghasemi‐Varnamkhasti
出处
期刊:Food Chemistry: X [Elsevier]
卷期号:18: 100622-100622 被引量:16
标识
DOI:10.1016/j.fochx.2023.100622
摘要

Olive oil is one of the healthiest and most nutritious edible oils, and it has a great potential to be adulterated. In this research, fraud samples of olive oil were detected with six different classification models by fusion of two methods of E-nose and ultrasound. The samples were prepared in six categories of adulteration. The E-nose system included eight various sensors. 2 MHz probes were used in through transmission ultrasound system. Principal Component Analysis method was used to reduce features and six classification models were used for classification. Feature with the greatest influence in the classification was "percentage of ultrasonic amplitude loss." It was found that the ultrasound system's data had worked more effectively than the E-nose system. Results showed that the ANN method was recognized as the most effective classifier with the highest accuracy (95.51%). The accuracy of classification in all the classification models significantly increased with data fusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超级的千青完成签到 ,获得积分10
刚刚
foceman发布了新的文献求助10
刚刚
pure123完成签到,获得积分10
1秒前
专注的问寒应助xxxx采纳,获得20
1秒前
量子星尘发布了新的文献求助10
1秒前
luan完成签到,获得积分10
1秒前
Udo完成签到,获得积分10
1秒前
1秒前
1秒前
叶子完成签到,获得积分10
2秒前
2秒前
2秒前
俏皮绝山完成签到 ,获得积分10
2秒前
2秒前
小马甲应助Glitter采纳,获得10
2秒前
weiwei发布了新的文献求助10
2秒前
小二郎应助aaa采纳,获得10
2秒前
唠叨的富发布了新的文献求助10
3秒前
Meyako应助sky木槿采纳,获得10
3秒前
zwq完成签到,获得积分10
3秒前
3秒前
大模型应助ww采纳,获得30
3秒前
自然的曲奇完成签到 ,获得积分10
4秒前
4秒前
凌爽完成签到 ,获得积分10
4秒前
4秒前
Hello应助zhaojiachao采纳,获得10
4秒前
5秒前
5秒前
领导范儿应助清欢采纳,获得10
5秒前
科研通AI6应助fxyfxy采纳,获得10
5秒前
5秒前
玉婷完成签到,获得积分10
5秒前
超级绫完成签到 ,获得积分10
5秒前
斯文败类应助zpctx采纳,获得10
6秒前
谷云应助王歪歪采纳,获得10
6秒前
6秒前
隐形曼青应助junjun采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721