重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine learning combined with molecular simulations to screen α-amylase inhibitors as compounds that regulate blood sugar

淀粉酶 化学 对接(动物) 生物化学 医学 护理部
作者
Bo-Hao Liu,Bing Zhang,Ling Li,Kun-long Wang,Ying‐Hua Zhang,Jie Zhou,Baorong Wang
出处
期刊:Process Biochemistry [Elsevier]
卷期号:136: 169-181 被引量:5
标识
DOI:10.1016/j.procbio.2023.11.026
摘要

Diabetes, a metabolic disease characterized by hyperglycemia, seriously endangers the health and the lives of people. α-Amylase inhibitors have become effective substances to control blood glucose, and attracted extensive attention. In this study, a database of α-amylase inhibitors derived from naturally active small molecules in food was created and a quantitative structure-activity relationship model was developed by combining three machine learning methods (SVM, RF, and LDA) with four descriptors (MOE, ChemoPy, Mordred, and Rdkit). Hydrogen bond and hydrophobic interaction in the inhibition of α-amylase activity was confirmed by molecular docking. Enzyme inhibition experiments showed that the predicted compound had α-amylase inhibitory activity. Nevadensin was identified as a promising candidate of α-amylase inhibitors. The stability of α-amylase binding reaction was verified by molecular dynamics simulation. Optimal process conditions for the extraction of nevadensin from L. pauciflorus maxim were derived from single-factor experiments and response surface modeling. A promising method for digging natural α-amylase inhibitors was developed and the mode between inhibitors and α-amylase was explained in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李林完成签到,获得积分10
1秒前
1秒前
SciGPT应助我的小羊采纳,获得10
2秒前
呆梨医生完成签到,获得积分10
2秒前
3秒前
工藤新一完成签到,获得积分10
3秒前
研究生发布了新的文献求助10
4秒前
4秒前
mdomse2109发布了新的文献求助10
4秒前
DIPLO发布了新的文献求助10
4秒前
深情安青应助kio采纳,获得10
5秒前
5秒前
Zhouzhou完成签到 ,获得积分10
6秒前
6秒前
YW完成签到,获得积分10
6秒前
一路向北发布了新的文献求助30
6秒前
6秒前
6秒前
Ava应助瘦瘦牛排采纳,获得10
7秒前
颖火虫发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
wei完成签到 ,获得积分10
7秒前
8秒前
刻苦短靴发布了新的文献求助10
10秒前
fveie发布了新的文献求助10
10秒前
10秒前
蓝波酱发布了新的文献求助10
10秒前
10秒前
qwq关注了科研通微信公众号
11秒前
shellyAPTX4869完成签到,获得积分10
11秒前
老实的小笼包完成签到,获得积分10
11秒前
11秒前
yuanyeyy发布了新的文献求助10
11秒前
11秒前
11秒前
北极星发布了新的文献求助10
12秒前
浮游应助pick_up采纳,获得10
12秒前
Lg完成签到,获得积分10
12秒前
英俊的铭应助feihu采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516