Machine learning combined with molecular simulations to screen α-amylase inhibitors as compounds that regulate blood sugar

淀粉酶 化学 对接(动物) 生物化学 医学 护理部
作者
Bo-Hao Liu,Bing Zhang,Ling Li,Kun-long Wang,Ying‐Hua Zhang,Jie Zhou,Baorong Wang
出处
期刊:Process Biochemistry [Elsevier]
卷期号:136: 169-181 被引量:4
标识
DOI:10.1016/j.procbio.2023.11.026
摘要

Diabetes, a metabolic disease characterized by hyperglycemia, seriously endangers the health and the lives of people. α-Amylase inhibitors have become effective substances to control blood glucose, and attracted extensive attention. In this study, a database of α-amylase inhibitors derived from naturally active small molecules in food was created and a quantitative structure-activity relationship model was developed by combining three machine learning methods (SVM, RF, and LDA) with four descriptors (MOE, ChemoPy, Mordred, and Rdkit). Hydrogen bond and hydrophobic interaction in the inhibition of α-amylase activity was confirmed by molecular docking. Enzyme inhibition experiments showed that the predicted compound had α-amylase inhibitory activity. Nevadensin was identified as a promising candidate of α-amylase inhibitors. The stability of α-amylase binding reaction was verified by molecular dynamics simulation. Optimal process conditions for the extraction of nevadensin from L. pauciflorus maxim were derived from single-factor experiments and response surface modeling. A promising method for digging natural α-amylase inhibitors was developed and the mode between inhibitors and α-amylase was explained in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助研友_8yN60L采纳,获得30
1秒前
蒋时晏应助Aria采纳,获得30
1秒前
科研通AI5应助哒哒猪采纳,获得10
1秒前
左手天下完成签到 ,获得积分10
1秒前
1秒前
yyauthor完成签到,获得积分10
1秒前
Maxw发布了新的文献求助10
1秒前
哈哈哈haha完成签到,获得积分10
2秒前
2秒前
巨大的小侠完成签到,获得积分10
2秒前
结实雪卉发布了新的文献求助10
2秒前
李健的小迷弟应助韭菜采纳,获得10
3秒前
QXS完成签到,获得积分10
4秒前
852应助无限的隶采纳,获得10
4秒前
flow完成签到,获得积分10
4秒前
4秒前
4秒前
黄嘟嘟完成签到,获得积分10
5秒前
bwbw完成签到,获得积分10
5秒前
大橙子发布了新的文献求助10
5秒前
难过鸿涛应助学术咸鱼采纳,获得10
5秒前
今何在完成签到,获得积分10
6秒前
BESTZJ完成签到,获得积分10
6秒前
爆米花应助gww采纳,获得10
6秒前
6秒前
6秒前
风趣的天奇完成签到,获得积分10
6秒前
6秒前
6秒前
运气先生完成签到 ,获得积分10
7秒前
flow发布了新的文献求助10
7秒前
小西贝完成签到 ,获得积分10
7秒前
一个小太阳鸭完成签到,获得积分10
7秒前
脑洞疼应助xiuxiu_27采纳,获得10
8秒前
eth完成签到,获得积分10
8秒前
华仔应助wzm采纳,获得10
8秒前
Anyixx完成签到 ,获得积分10
9秒前
9秒前
成哥完成签到,获得积分10
9秒前
灵巧的坤发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759