Machine learning combined with molecular simulations to screen α-amylase inhibitors as compounds that regulate blood sugar

淀粉酶 化学 对接(动物) 生物化学 医学 护理部
作者
Bo-Hao Liu,Bing Zhang,Ling Li,Kun-long Wang,Yinghua Zhang,Jie Zhou,Baorong Wang
出处
期刊:Process Biochemistry [Elsevier]
卷期号:136: 169-181 被引量:2
标识
DOI:10.1016/j.procbio.2023.11.026
摘要

Diabetes, a metabolic disease characterized by hyperglycemia, seriously endangers the health and the lives of people. α-Amylase inhibitors have become effective substances to control blood glucose, and attracted extensive attention. In this study, a database of α-amylase inhibitors derived from naturally active small molecules in food was created and a quantitative structure-activity relationship model was developed by combining three machine learning methods (SVM, RF, and LDA) with four descriptors (MOE, ChemoPy, Mordred, and Rdkit). Hydrogen bond and hydrophobic interaction in the inhibition of α-amylase activity was confirmed by molecular docking. Enzyme inhibition experiments showed that the predicted compound had α-amylase inhibitory activity. Nevadensin was identified as a promising candidate of α-amylase inhibitors. The stability of α-amylase binding reaction was verified by molecular dynamics simulation. Optimal process conditions for the extraction of nevadensin from L. pauciflorus maxim were derived from single-factor experiments and response surface modeling. A promising method for digging natural α-amylase inhibitors was developed and the mode between inhibitors and α-amylase was explained in this research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
稳重元冬发布了新的文献求助10
1秒前
隐形曼青应助王先生采纳,获得10
1秒前
2秒前
上官若男应助Singularity采纳,获得10
3秒前
3秒前
杨娟完成签到,获得积分10
4秒前
5秒前
米妮完成签到 ,获得积分10
5秒前
6秒前
6秒前
鄂成危发布了新的文献求助10
7秒前
唐展通发布了新的文献求助10
7秒前
炙热靖雁完成签到,获得积分10
7秒前
吗喽完成签到,获得积分10
8秒前
田様应助dalin采纳,获得10
9秒前
pgg发布了新的文献求助10
11秒前
大模型应助wewewew采纳,获得10
14秒前
CipherSage应助pgg采纳,获得10
15秒前
17秒前
20秒前
Orange应助自信的毛豆采纳,获得10
21秒前
nananana完成签到 ,获得积分10
21秒前
orixero应助呆呆采纳,获得10
22秒前
28秒前
gnufgg完成签到,获得积分10
29秒前
32秒前
布娃娃小熊完成签到,获得积分10
37秒前
万能图书馆应助白桃采纳,获得10
37秒前
大模型应助carbon-dots采纳,获得10
38秒前
zy应助勤劳的靖儿采纳,获得10
39秒前
39秒前
栗子完成签到,获得积分10
42秒前
大个应助十七采纳,获得10
42秒前
充电宝应助He采纳,获得10
42秒前
小马甲应助布娃娃小熊采纳,获得10
42秒前
44秒前
45秒前
46秒前
上官若男应助111111111采纳,获得10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102