External Validation of a Commercial Acute Kidney Injury Predictive Model

急性肾损伤 医学 内科学 重症监护医学 计算机科学 急诊医学
作者
Sayon Dutta,Dustin McEvoy,Lisette Dunham,Ronelle Stevens,David Rubins,Gearoid M. McMahon,Lipika Samal
标识
DOI:10.1056/aioa2300099
摘要

BackgroundHospital-acquired acute kidney injury (HA-AKI), a common complication in hospitalized patients that increases morbidity and mortality, is challenging to predict given its multifactorial etiology. This study evaluated the performance of a commercial machine learning model developed by Epic Systems Corporation to predict the risk of developing HA-AKI in adult emergency department and hospitalized patients at a large health care system. MethodsThe Epic Risk of HA-AKI predictive model is a gradient-boosted forest ensemble that evaluates demographic characteristics, comorbidities, medication administration, and other clinical variables. The prospectively implemented model generated predictions hourly. Encounter-level performance and prediction-level model performance were evaluated by using the area under the receiver operating curve (AUROC) and the area under the precision recall curve (AUPRC) metrics. Net benefit was evaluated by using decision curve analysis. Test characteristics and lead time warning were also evaluated. The study included patients with at least two serum creatinine measurements and no history of stage 4 or 5 chronic kidney disease or end-stage renal disease between August 2022 and January 2023. ResultsDuring a 5-month period, 39,891 encounters were evaluated. The incidence of the primary outcome — development of Kidney Disease: Improving Global Outcomes stage 1 HA-AKI during the encounter — was 24.5%. The encounter-level AUROC was 0.77 (95% confidence interval [CI], 0.76 to 0.78), and the AUPRC was 0.49 (95% CI, 0.48 to 0.50). With a prediction horizon of 48 hours, the AUROC was 0.76 (95% CI, 0.76 to 0.76), and the AUPRC was 0.19 (95% CI, 0.19 to 0.19). At a score threshold of 50, the positive predictive value was 88%, sensitivity was 50%, and median lead-time warning was 21.6 hours before stage 1 HA-AKI occurred. ConclusionsThe Epic Risk of HA-AKI predictive model performed moderately well. Additional study is required to determine its clinical impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄发布了新的文献求助30
刚刚
小骁同学完成签到,获得积分10
刚刚
朏朏完成签到,获得积分10
1秒前
5km完成签到,获得积分10
2秒前
wanci应助爱学习的曼卉采纳,获得10
2秒前
2秒前
4秒前
5秒前
Theprisoners应助吗喽采纳,获得20
5秒前
王冠军完成签到,获得积分10
5秒前
6秒前
6秒前
认真跳跳糖完成签到,获得积分10
7秒前
Zhao Jiaxu完成签到,获得积分10
7秒前
英俊的铭应助mengxia采纳,获得10
8秒前
在水一方应助abletoo采纳,获得20
9秒前
9秒前
9秒前
明理十三发布了新的文献求助10
10秒前
relink完成签到,获得积分10
11秒前
充电宝应助迷你的颖采纳,获得10
12秒前
13秒前
13秒前
niania发布了新的文献求助10
14秒前
Anxinxin完成签到,获得积分10
15秒前
ding应助ZengJuan采纳,获得10
16秒前
16秒前
17秒前
邓思琪完成签到,获得积分10
17秒前
欣慰碧琴完成签到,获得积分10
17秒前
Maisie发布了新的文献求助10
17秒前
ding应助YZzzJ采纳,获得10
18秒前
追寻访卉发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
21秒前
楼萌黑发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513