材料科学
流动应力
动态再结晶
应变率
变形(气象学)
钛合金
微观结构
复合材料
变形机理
热加工
层状结构
合金
冶金
铝化钛
金属间化合物
作者
Zaixian Chai,William Yi Wang,Yong Ren,Xinzhao Wang,Ying Zhang,Feng Sun,Hao Fang,Jinshan Li
标识
DOI:10.1016/j.msea.2024.146331
摘要
Thermomechanical processing is one of the major steps in the fabrication of structural components used in various engineering applications. The thermomechanical coupling effect of temperature and strain rate has a significant impact on the stress-strain thermal deformation behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si (TC11) alloy. Here, the hot deformation behavior of TC11 dual-phase alloy has been comprehensively investigated by the hot compression tests with deformation temperatures ranging from 870 °C to 960 °C and strain rates of 0.01 s−1 to 1 s−1. Based on the flow stress curves and Arrhenius-type constitutive equation, a strain compensated Arrhenius model for TC11 alloy was successfully developed, achieving rapid and accurate prediction of high-temperature flow stress. By studying the deformed microstructure characteristics of materials under various deformation conditions, the role of deformation temperatures and strain rates was fully discussed in microstructure evolution, including the primary α phase (αp) and lamellar (αs). The thin-long lamellar shape αs can be obtained at a higher strain rate and deformation temperature. The predominance of single-peaked stress features in most flow curves, along with EBSD characterization results, indicates that continuous dynamic recrystallization (DRX) is the primary softening mechanism under different deformation conditions. This work supports the rapid prediction of flow stress and the relationship between process parameters and microstructural evolution to expedite the design optimization of plastic deformation process parameters and the development of advanced TC11 titanium alloy with targeted microstructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI