亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Reinforcement Learning for Multi-Aircraft Conflict Resolution

强化学习 冲突解决 钢筋 图形 计算机科学 分辨率(逻辑) 人工智能 工程类 结构工程 理论计算机科学 政治学 法学
作者
Yumeng Li,Yunhe Zhang,Tong Guo,Yu Liu,Yisheng Lv,Wenbo Du
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tiv.2024.3364652
摘要

The escalating density of airspace has led to sharply increased conflicts between aircraft. Efficient and scalable conflict resolution methods are crucial to mitigate collision risks. Existing learning-based methods become less effective as the scale of aircraft increases due to their redundant information representations. In this paper, to accommodate the increased airspace density, a novel graph reinforcement learning (GRL) method is presented to efficiently learn deconfliction strategies. A time-evolving conflict graph is exploited to represent the local state of individual aircraft and the global spatiotemporal relationships between them. Equipped with the conflict graph, GRL can efficiently learn deconfliction strategies by selectively aggregating aircraft state information through a multi-head attention-boosted graph neural network. Furthermore, a temporal regularization mechanism is proposed to enhance learning stability in highly dynamic environments. Comprehensive experimental studies have been conducted on an OpenAI Gym-based flight simulator. Compared with the existing state-of-the-art learning-based methods, the results demonstrate that GRL can save much training time while achieving significantly better deconfliction strategies in terms of safety and efficiency metrics. In addition, GRL has a strong power of scalability and robustness with increasing aircraft scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miracle1005发布了新的文献求助10
3秒前
4秒前
英勇新烟完成签到,获得积分10
8秒前
科研小白发布了新的文献求助10
9秒前
13秒前
miracle1005完成签到,获得积分10
14秒前
16秒前
轻松的天德完成签到,获得积分20
19秒前
科研通AI5应助受伤胡萝卜采纳,获得10
21秒前
Qi应助叫我陈老师啊采纳,获得50
21秒前
Wang发布了新的文献求助10
25秒前
34秒前
李健的小迷弟应助家湘采纳,获得10
36秒前
37秒前
37秒前
易殇发布了新的文献求助30
42秒前
46秒前
QQ发布了新的文献求助10
46秒前
李健的小迷弟应助高强采纳,获得10
46秒前
Wang完成签到,获得积分10
47秒前
ling361完成签到,获得积分10
48秒前
48秒前
碳酸芙兰完成签到,获得积分10
52秒前
52秒前
高强完成签到,获得积分10
54秒前
小二郎应助科研通管家采纳,获得10
55秒前
卷卷完成签到 ,获得积分10
56秒前
高强发布了新的文献求助10
57秒前
易殇完成签到,获得积分20
58秒前
思源应助科研小白采纳,获得10
59秒前
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
华仔应助adfadf采纳,获得10
1分钟前
1分钟前
1分钟前
choyng完成签到,获得积分10
1分钟前
choyng发布了新的文献求助30
1分钟前
QQ完成签到,获得积分20
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832