A Generic Framework for Degradation Modeling Based on Fusion of Spectrum Amplitudes

预言 降级(电信) 传感器融合 状态监测 振动 过程(计算) 计算机科学 可靠性工程 数据挖掘 工程类 人工智能 电信 电气工程 声学 操作系统 物理
作者
Tongtong Yan,Dong Wang,Tangbin Xia,Lifeng Xi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 308-319 被引量:30
标识
DOI:10.1109/tase.2020.3029162
摘要

Prognostics and health management aims to use on-line sensor data to monitor and predict current and future health conditions of degraded systems and components. Nowadays, constructing composite health indices for characterizing current health conditions of a system from multiple degradation-based sensor data has attracted much attention. These kinds of “data-level” models show strong ability to provide a better degradation characterization of a degraded system than a model solely depending on data from an individual sensor. Although numerous efforts have been made to propose “data-level” fusion methodologies for process data, such as temperature, pressure, speeds, etc., little research has targeted “data-level” fusion models for nonprocess data, such as vibration and acoustic signals. In this article, a methodology for constructing a composite health index from fusion of spectrum amplitudes is proposed. Here, each spectrum amplitude can be regarded as “an individual sensor.” The goal of this article is that a composite health index generated from fusion of spectrum amplitudes can simultaneously detect incipient faults and provide a monotonically increasing trend for degradation assessment. Our proposed methodology was verified by two illustrative examples including gearbox run-to-failure vibration data and bearing run-to-failure vibration data. Results showed that our proposed methodology is better than popular sparse measures for gear and bearing health monitoring and degradation assessment. Note to Practitioners —Process data, such as temperature, pressure, speed, etc., are capable of directly showing degradation trends of degraded systems and components. “Data-level” fusion models can be directly used to fuse process data from multiple sensors to show a better-fused degradation trend than a sole trend obtained from an individual process data sensor. Being different from process data, nonprocess data, such as vibration and acoustic data, cannot be used to directly show degradation trends unless they are transformed into a health index. One of the benefits of nonprocess data is that they have been proved to be sensitive to incipient machine faults. Nevertheless, due to complicated transmission paths and multiple responses, transforming nonprocess data into a health index is still a challenging task. This article presents a methodology to fuse spectrum amplitudes to form a health index that can simultaneously detect incipient machine faults and assess monotonic machine degradation. The main idea of this article is to regard each spectrum amplitude as “an individual sensor” and the sum of weighted spectrum amplitudes as a health index. To implement the proposed methodology, it is necessary: 1) to transform temporal nonprocess data into frequency spectra by using the well-known Fourier transform; 2) to know two essential properties about detecting incipient machine faults and assessing machine degradation; and 3) to train weights based on the essential properties by any convex optimization algorithms. Once optimal weights are obtained, the health index has ability to simultaneously detect incipient machine faults and monotonically assess machine degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助15134786587采纳,获得10
2秒前
完美世界应助不安的蜡烛采纳,获得10
2秒前
7秒前
dddd应助super chan采纳,获得10
8秒前
我是老大应助Scinature采纳,获得10
10秒前
HSA发布了新的文献求助10
11秒前
花花完成签到,获得积分10
11秒前
lvzhechen完成签到,获得积分10
12秒前
vermouth完成签到,获得积分10
12秒前
王倩的老公完成签到 ,获得积分10
16秒前
17秒前
LittleSeven完成签到,获得积分10
18秒前
vermouth发布了新的文献求助10
20秒前
尽如发布了新的文献求助40
21秒前
Meng完成签到,获得积分10
22秒前
李爱国应助tuntunchen采纳,获得10
23秒前
24秒前
英俊的铭应助TT2022采纳,获得10
26秒前
小曲完成签到 ,获得积分10
28秒前
吴丹发布了新的文献求助10
30秒前
32秒前
李某完成签到 ,获得积分10
36秒前
38秒前
111111完成签到,获得积分10
39秒前
爱笑的小黑完成签到 ,获得积分10
40秒前
40秒前
43秒前
Wei完成签到 ,获得积分10
46秒前
Scinature发布了新的文献求助10
49秒前
景景好完成签到,获得积分10
49秒前
51秒前
51秒前
茫123456完成签到,获得积分10
52秒前
乐荷完成签到,获得积分10
53秒前
liyanglin发布了新的文献求助10
53秒前
爱看文献的小恐龙完成签到,获得积分10
55秒前
56秒前
Muncy完成签到 ,获得积分10
57秒前
周萌发布了新的文献求助10
58秒前
59秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997562
求助须知:如何正确求助?哪些是违规求助? 3537094
关于积分的说明 11270816
捐赠科研通 3276315
什么是DOI,文献DOI怎么找? 1806876
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975