A Generic Framework for Degradation Modeling Based on Fusion of Spectrum Amplitudes

预言 降级(电信) 传感器融合 状态监测 振动 过程(计算) 计算机科学 可靠性工程 数据挖掘 工程类 人工智能 电信 电气工程 声学 物理 操作系统
作者
Tongtong Yan,Dong Wang,Tangbin Xia,Lifeng Xi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 308-319 被引量:30
标识
DOI:10.1109/tase.2020.3029162
摘要

Prognostics and health management aims to use on-line sensor data to monitor and predict current and future health conditions of degraded systems and components. Nowadays, constructing composite health indices for characterizing current health conditions of a system from multiple degradation-based sensor data has attracted much attention. These kinds of “data-level” models show strong ability to provide a better degradation characterization of a degraded system than a model solely depending on data from an individual sensor. Although numerous efforts have been made to propose “data-level” fusion methodologies for process data, such as temperature, pressure, speeds, etc., little research has targeted “data-level” fusion models for nonprocess data, such as vibration and acoustic signals. In this article, a methodology for constructing a composite health index from fusion of spectrum amplitudes is proposed. Here, each spectrum amplitude can be regarded as “an individual sensor.” The goal of this article is that a composite health index generated from fusion of spectrum amplitudes can simultaneously detect incipient faults and provide a monotonically increasing trend for degradation assessment. Our proposed methodology was verified by two illustrative examples including gearbox run-to-failure vibration data and bearing run-to-failure vibration data. Results showed that our proposed methodology is better than popular sparse measures for gear and bearing health monitoring and degradation assessment. Note to Practitioners —Process data, such as temperature, pressure, speed, etc., are capable of directly showing degradation trends of degraded systems and components. “Data-level” fusion models can be directly used to fuse process data from multiple sensors to show a better-fused degradation trend than a sole trend obtained from an individual process data sensor. Being different from process data, nonprocess data, such as vibration and acoustic data, cannot be used to directly show degradation trends unless they are transformed into a health index. One of the benefits of nonprocess data is that they have been proved to be sensitive to incipient machine faults. Nevertheless, due to complicated transmission paths and multiple responses, transforming nonprocess data into a health index is still a challenging task. This article presents a methodology to fuse spectrum amplitudes to form a health index that can simultaneously detect incipient machine faults and assess monotonic machine degradation. The main idea of this article is to regard each spectrum amplitude as “an individual sensor” and the sum of weighted spectrum amplitudes as a health index. To implement the proposed methodology, it is necessary: 1) to transform temporal nonprocess data into frequency spectra by using the well-known Fourier transform; 2) to know two essential properties about detecting incipient machine faults and assessing machine degradation; and 3) to train weights based on the essential properties by any convex optimization algorithms. Once optimal weights are obtained, the health index has ability to simultaneously detect incipient machine faults and monotonically assess machine degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助乐观的镜子采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
鲤鱼谷秋发布了新的文献求助10
2秒前
帅气善斓完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
丰富的河马完成签到,获得积分10
4秒前
小何发布了新的文献求助10
4秒前
4秒前
可爱的函函应助刘胖胖采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
zzz发布了新的文献求助20
5秒前
肖邦发布了新的文献求助10
6秒前
ff发布了新的文献求助10
6秒前
善学以致用应助赛特新思采纳,获得10
6秒前
刘柑橘完成签到,获得积分10
6秒前
ju00发布了新的文献求助10
7秒前
木木完成签到,获得积分10
7秒前
帅气善斓发布了新的文献求助20
8秒前
8秒前
周琦发布了新的文献求助10
8秒前
dew应助魏欣娜采纳,获得10
8秒前
搞怪人雄发布了新的文献求助10
8秒前
虚心焦完成签到 ,获得积分10
8秒前
9秒前
第一个相遇完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI6.1应助Gc采纳,获得10
10秒前
geo完成签到 ,获得积分10
11秒前
不能没有科研完成签到,获得积分10
11秒前
11秒前
李健的小迷弟应助Royalll采纳,获得30
12秒前
研友_ZelDDn完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106