A Generic Framework for Degradation Modeling Based on Fusion of Spectrum Amplitudes

预言 降级(电信) 传感器融合 状态监测 振动 过程(计算) 计算机科学 可靠性工程 数据挖掘 工程类 人工智能 电信 电气工程 声学 物理 操作系统
作者
Tongtong Yan,Dong Wang,Tangbin Xia,Lifeng Xi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 308-319 被引量:30
标识
DOI:10.1109/tase.2020.3029162
摘要

Prognostics and health management aims to use on-line sensor data to monitor and predict current and future health conditions of degraded systems and components. Nowadays, constructing composite health indices for characterizing current health conditions of a system from multiple degradation-based sensor data has attracted much attention. These kinds of “data-level” models show strong ability to provide a better degradation characterization of a degraded system than a model solely depending on data from an individual sensor. Although numerous efforts have been made to propose “data-level” fusion methodologies for process data, such as temperature, pressure, speeds, etc., little research has targeted “data-level” fusion models for nonprocess data, such as vibration and acoustic signals. In this article, a methodology for constructing a composite health index from fusion of spectrum amplitudes is proposed. Here, each spectrum amplitude can be regarded as “an individual sensor.” The goal of this article is that a composite health index generated from fusion of spectrum amplitudes can simultaneously detect incipient faults and provide a monotonically increasing trend for degradation assessment. Our proposed methodology was verified by two illustrative examples including gearbox run-to-failure vibration data and bearing run-to-failure vibration data. Results showed that our proposed methodology is better than popular sparse measures for gear and bearing health monitoring and degradation assessment. Note to Practitioners —Process data, such as temperature, pressure, speed, etc., are capable of directly showing degradation trends of degraded systems and components. “Data-level” fusion models can be directly used to fuse process data from multiple sensors to show a better-fused degradation trend than a sole trend obtained from an individual process data sensor. Being different from process data, nonprocess data, such as vibration and acoustic data, cannot be used to directly show degradation trends unless they are transformed into a health index. One of the benefits of nonprocess data is that they have been proved to be sensitive to incipient machine faults. Nevertheless, due to complicated transmission paths and multiple responses, transforming nonprocess data into a health index is still a challenging task. This article presents a methodology to fuse spectrum amplitudes to form a health index that can simultaneously detect incipient machine faults and assess monotonic machine degradation. The main idea of this article is to regard each spectrum amplitude as “an individual sensor” and the sum of weighted spectrum amplitudes as a health index. To implement the proposed methodology, it is necessary: 1) to transform temporal nonprocess data into frequency spectra by using the well-known Fourier transform; 2) to know two essential properties about detecting incipient machine faults and assessing machine degradation; and 3) to train weights based on the essential properties by any convex optimization algorithms. Once optimal weights are obtained, the health index has ability to simultaneously detect incipient machine faults and monotonically assess machine degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
离希夷完成签到,获得积分10
刚刚
岩追研完成签到,获得积分10
1秒前
lucid完成签到,获得积分10
1秒前
小蘑菇应助simon采纳,获得10
2秒前
2秒前
CL837809486完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
夕荀发布了新的文献求助10
3秒前
3秒前
3秒前
研友_VZG7GZ应助独特的追命采纳,获得30
3秒前
4秒前
布布完成签到 ,获得积分10
4秒前
善良书蝶完成签到 ,获得积分10
4秒前
4秒前
852应助jyh采纳,获得10
5秒前
5秒前
星辰大海应助金木采纳,获得10
5秒前
5秒前
6秒前
无限若云发布了新的文献求助10
6秒前
chenhouhan发布了新的文献求助10
6秒前
李华完成签到 ,获得积分10
7秒前
11发布了新的文献求助10
7秒前
一手灵魂完成签到,获得积分10
7秒前
马里兰州蛙泳胡萝卜完成签到,获得积分10
7秒前
大个应助Mister_CHEN采纳,获得10
7秒前
zz完成签到,获得积分10
8秒前
8秒前
不爱喝咖啡完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
科研小狗发布了新的文献求助10
9秒前
9秒前
AI完成签到,获得积分10
10秒前
10秒前
科研通AI6应助428采纳,获得10
10秒前
柯南完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271