A Generic Framework for Degradation Modeling Based on Fusion of Spectrum Amplitudes

预言 降级(电信) 传感器融合 状态监测 振动 过程(计算) 计算机科学 可靠性工程 数据挖掘 工程类 人工智能 电信 电气工程 声学 操作系统 物理
作者
Tongtong Yan,Dong Wang,Tangbin Xia,Lifeng Xi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 308-319 被引量:30
标识
DOI:10.1109/tase.2020.3029162
摘要

Prognostics and health management aims to use on-line sensor data to monitor and predict current and future health conditions of degraded systems and components. Nowadays, constructing composite health indices for characterizing current health conditions of a system from multiple degradation-based sensor data has attracted much attention. These kinds of “data-level” models show strong ability to provide a better degradation characterization of a degraded system than a model solely depending on data from an individual sensor. Although numerous efforts have been made to propose “data-level” fusion methodologies for process data, such as temperature, pressure, speeds, etc., little research has targeted “data-level” fusion models for nonprocess data, such as vibration and acoustic signals. In this article, a methodology for constructing a composite health index from fusion of spectrum amplitudes is proposed. Here, each spectrum amplitude can be regarded as “an individual sensor.” The goal of this article is that a composite health index generated from fusion of spectrum amplitudes can simultaneously detect incipient faults and provide a monotonically increasing trend for degradation assessment. Our proposed methodology was verified by two illustrative examples including gearbox run-to-failure vibration data and bearing run-to-failure vibration data. Results showed that our proposed methodology is better than popular sparse measures for gear and bearing health monitoring and degradation assessment. Note to Practitioners —Process data, such as temperature, pressure, speed, etc., are capable of directly showing degradation trends of degraded systems and components. “Data-level” fusion models can be directly used to fuse process data from multiple sensors to show a better-fused degradation trend than a sole trend obtained from an individual process data sensor. Being different from process data, nonprocess data, such as vibration and acoustic data, cannot be used to directly show degradation trends unless they are transformed into a health index. One of the benefits of nonprocess data is that they have been proved to be sensitive to incipient machine faults. Nevertheless, due to complicated transmission paths and multiple responses, transforming nonprocess data into a health index is still a challenging task. This article presents a methodology to fuse spectrum amplitudes to form a health index that can simultaneously detect incipient machine faults and assess monotonic machine degradation. The main idea of this article is to regard each spectrum amplitude as “an individual sensor” and the sum of weighted spectrum amplitudes as a health index. To implement the proposed methodology, it is necessary: 1) to transform temporal nonprocess data into frequency spectra by using the well-known Fourier transform; 2) to know two essential properties about detecting incipient machine faults and assessing machine degradation; and 3) to train weights based on the essential properties by any convex optimization algorithms. Once optimal weights are obtained, the health index has ability to simultaneously detect incipient machine faults and monotonically assess machine degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
刘芸芸完成签到,获得积分10
刚刚
伍贰肆完成签到,获得积分10
1秒前
phil发布了新的文献求助10
1秒前
福娃发布了新的文献求助10
1秒前
1秒前
xyz完成签到,获得积分10
2秒前
MJQ完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
张潇赫完成签到,获得积分10
2秒前
HJJHJH发布了新的文献求助50
3秒前
4秒前
儒雅的秋珊完成签到,获得积分10
4秒前
善学以致用应助BWZ采纳,获得10
4秒前
Meiyu发布了新的文献求助10
4秒前
_hhhjhhh完成签到,获得积分10
5秒前
91发布了新的文献求助10
5秒前
Li发布了新的文献求助10
6秒前
6秒前
hn发布了新的文献求助20
6秒前
zhou发布了新的文献求助10
6秒前
lyejxusgh完成签到,获得积分10
7秒前
赖道之发布了新的文献求助10
7秒前
张鱼小丸子完成签到,获得积分10
7秒前
无花果应助下课了吧采纳,获得10
7秒前
加肥猫1992完成签到,获得积分10
7秒前
zhogwe完成签到,获得积分10
8秒前
Zachary完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
坦率的无春完成签到 ,获得积分10
9秒前
9秒前
胤宸发布了新的文献求助10
9秒前
10秒前
ZY发布了新的文献求助20
10秒前
Wu完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762