Binary Whale Optimization Algorithm for Dimensionality Reduction

计算机科学 乙状窦函数 水准点(测量) 二进制数 算法 特征选择 维数之咒 降维 可解释性 人工智能 模式识别(心理学) 数学 人工神经网络 大地测量学 算术 地理
作者
Abdelazim G. Hussien,Diego Oliva,Essam H. Houssein,Àngel A. Juan,Xu Yu
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:8 (10): 1821-1821 被引量:96
标识
DOI:10.3390/math8101821
摘要

Feature selection (FS) was regarded as a global combinatorial optimization problem. FS is used to simplify and enhance the quality of high-dimensional datasets by selecting prominent features and removing irrelevant and redundant data to provide good classification results. FS aims to reduce the dimensionality and improve the classification accuracy that is generally utilized with great importance in different fields such as pattern classification, data analysis, and data mining applications. The main problem is to find the best subset that contains the representative information of all the data. In order to overcome this problem, two binary variants of the whale optimization algorithm (WOA) are proposed, called bWOA-S and bWOA-V. They are used to decrease the complexity and increase the performance of a system by selecting significant features for classification purposes. The first bWOA-S version uses the Sigmoid transfer function to convert WOA values to binary ones, whereas the second bWOA-V version uses a hyperbolic tangent transfer function. Furthermore, the two binary variants introduced here were compared with three famous and well-known optimization algorithms in this domain, such as Particle Swarm Optimizer (PSO), three variants of binary ant lion (bALO1, bALO2, and bALO3), binary Dragonfly Algorithm (bDA) as well as the original WOA, over 24 benchmark datasets from the UCI repository. Eventually, a non-parametric test called Wilcoxon’s rank-sum was carried out at 5% significance to prove the powerfulness and effectiveness of the two proposed algorithms when compared with other algorithms statistically. The qualitative and quantitative results showed that the two introduced variants in the FS domain are able to minimize the selected feature number as well as maximize the accuracy of the classification within an appropriate time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小聒发布了新的文献求助10
刚刚
土豪的黑夜完成签到,获得积分20
刚刚
刚刚
刚刚
斯文败类应助lqy采纳,获得10
2秒前
自强不息完成签到 ,获得积分10
2秒前
2秒前
哈哈完成签到,获得积分10
3秒前
SYLH应助gege采纳,获得10
3秒前
韩冬梅发布了新的文献求助10
3秒前
coffee333发布了新的文献求助10
3秒前
4秒前
彳亍而行发布了新的文献求助10
4秒前
5秒前
鲤鱼白玉完成签到,获得积分10
5秒前
5秒前
科研工作者完成签到,获得积分10
6秒前
koukeika发布了新的文献求助30
6秒前
彭于晏应助温子晴采纳,获得10
6秒前
Haoyun完成签到,获得积分10
7秒前
sleet完成签到 ,获得积分10
7秒前
Akim应助潇洒映冬采纳,获得10
7秒前
通研科发布了新的文献求助10
7秒前
深情的嫣然完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
有点鸭梨呀完成签到 ,获得积分10
9秒前
kelaibing完成签到,获得积分10
10秒前
hlh应助qi采纳,获得10
10秒前
amazing39完成签到,获得积分10
10秒前
coffee333完成签到,获得积分10
11秒前
霸气小蜜蜂完成签到 ,获得积分10
11秒前
小小狗完成签到,获得积分10
11秒前
Dog完成签到,获得积分10
11秒前
Sylvia完成签到,获得积分10
11秒前
11秒前
Cao完成签到 ,获得积分10
12秒前
00发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767827
求助须知:如何正确求助?哪些是违规求助? 3312579
关于积分的说明 10163927
捐赠科研通 3027714
什么是DOI,文献DOI怎么找? 1661654
邀请新用户注册赠送积分活动 794186
科研通“疑难数据库(出版商)”最低求助积分说明 756013