聚乙烯醇缩丁醛
电解质
离子电导率
电致变色
材料科学
电导率
聚合物
膜
极限抗拉强度
化学工程
电致变色装置
介电谱
电极
复合材料
电化学
化学
物理化学
工程类
生物化学
作者
Shian Guan,Wenjing Wang,Jianming Zheng,Chunye Xu
标识
DOI:10.1016/j.electacta.2020.136702
摘要
Abstract Based on the modified PMMA-PEG polymer loading with LiClO4/PC, a flexible, transparent free-standing quasi-solid polymer electrolyte (QSPE) was prepared. The ionic conductivity of QSPE membrane was carefully studied through electrochemical impedance spectroscopy. It was found that the QSPE membrane with 30 wt% 0.1 M LiClO4/PC displays a high conductivity (5.23 × 10−6 S/cm at room temperature), good transparency (over 70% in visible ranges) and a certain of mechanical strength. Furthermore, a novel fiber-network structured membrane of polyvinyl butyral (PVB) was designed and prepared via electro-spinning, which would allow the liquid QSPE fully complex with PVB polymer structurally. A great improvement for interfacial adhesion between the gel electrolyte and electrodes was achieved, the tensile strength increased to 0.31 MPa (QSPE-PVB) from 0.05 MPa (QSPE), while remaining a good transparency. Meanwhile, the ionic conductivity of the composite electrolyte reached a level of 10−5 S/cm. Using the gel composite electrolyte (QSPE-PVB membrane), all-solid-state electrochromic device (ECD) was assembled with a configuration of PProDot-Me2/QSPE-PVB/V2O5. This novel electrolyte could guarantee that PProDot-Me2 was able to switch its color from bleached state (Tb= 71.4% at 580 nm) to colored state (Tc= 23.7% at 580 nm) within 6 s under the applied potential of ±1.5 V. The as-fabricated QSPE-PVB ECD also exhibited an impressive stability of almost no transmittance attenuation. This new all-solid ECDs offered a certain operational advantage in real-world applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI