Dynamic clustering analysis for driving styles identification

计算机科学 仿形(计算机编程) 聚类分析 背景(考古学) 人工智能 鉴定(生物学) 驾驶模拟器 星团(航天器) 植物 生物 操作系统 古生物学 程序设计语言
作者
Maria Valentina Niño de Zepeda,Fanlin Meng,Jinya Su,Xiao‐Jun Zeng,Qian Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:97: 104096-104096 被引量:39
标识
DOI:10.1016/j.engappai.2020.104096
摘要

Abstract For intelligent driving systems, the ability to recognize different driving styles of surrounding vehicles is crucial in determining the safest, yet more efficient driving decisions especially in the context of the mixed driving environment. Knowing for instance if the vehicle in the adjacent lane is aggressive or cautious can greatly assist in the decision making of ego vehicle in terms of whether and when it is appropriate to make particular manoeuvres (e.g. lane change). In addition, vehicles behave differently under different surrounding environments, making the driving styles identification highly challenging. To this end, in this paper we propose a dynamic clustering based driving styles identification and profiling approach where clusters vary in response to the changing surrounding environment. To better capture dynamic driving patterns and understand the driving style switch behaviours and more complicated driving patterns, a position-dependent dynamic clustering structure is developed where a driver is assigned to a cluster sequence rather than a single cluster. To the best of our knowledge, this is the first research paper of its kind on the dynamic clustering of driving styles. The usefulness of the proposed method is demonstrated on a real-world vehicle trajectory dataset where results show that driving style switches and more complex driving behaviours can be better captured. The potential applications in intelligent driving systems are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月发布了新的文献求助10
刚刚
刚刚
lsw完成签到 ,获得积分10
刚刚
大饼半斤完成签到,获得积分10
1秒前
Ge完成签到,获得积分10
1秒前
blue发布了新的文献求助10
2秒前
郑郑爱吃蜂蜜完成签到,获得积分10
2秒前
隐形亦竹发布了新的文献求助10
3秒前
Z1070741749发布了新的文献求助10
3秒前
小研完成签到,获得积分10
3秒前
4秒前
赘婿应助仙姝采纳,获得10
4秒前
彭于晏应助苦逼的科研汪采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
黄毅完成签到,获得积分10
6秒前
冷艳的纸鹤完成签到,获得积分10
6秒前
大梦完成签到 ,获得积分10
7秒前
leeteukxx发布了新的文献求助10
7秒前
邓佳鑫Alan应助灵巧谷槐采纳,获得10
7秒前
7秒前
科研通AI5应助lkl采纳,获得10
8秒前
九珥完成签到 ,获得积分10
9秒前
9秒前
秋秋糖xte发布了新的文献求助10
9秒前
七月完成签到,获得积分10
10秒前
ddd完成签到,获得积分10
10秒前
xing完成签到,获得积分10
10秒前
支白薇完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
曙光森林完成签到,获得积分10
11秒前
ghost发布了新的文献求助10
12秒前
阿良发布了新的文献求助10
12秒前
13秒前
13秒前
obsession完成签到,获得积分10
13秒前
郭果儿完成签到 ,获得积分10
13秒前
机智乐蕊发布了新的文献求助10
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662961
求助须知:如何正确求助?哪些是违规求助? 3223721
关于积分的说明 9752858
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606229
邀请新用户注册赠送积分活动 758325
科研通“疑难数据库(出版商)”最低求助积分说明 734785