A Hybrid Classification Framework Based on Clustering

聚类分析 人工智能 计算机科学 机器学习 决策树 水准点(测量) 数据挖掘 班级(哲学) 统计分类 模式识别(心理学) 大地测量学 地理
作者
Jin Xiao,Yuhang Tian,Ling Xie,Xiaoyi Jiang,Jing Huang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2177-2188 被引量:27
标识
DOI:10.1109/tii.2019.2933675
摘要

The traditional supervised classification algorithms tend to focus on uncovering the relationship between sample attributes and the class labels; they seldom consider the potential structural characteristics of the sample space, often leading to unsatisfactory classification results. To improve the performance of classification models, many scholars have sought to construct hybrid models by combining both supervised and unsupervised learning. Although the existing hybrid models have shown significant potential in industrial applications, our experiments indicate that some shortcomings remain. With the aim of overcoming such shortcomings of the existing hybrid models, this article proposes a hybrid classification framework based on clustering (HCFC). First, it applies a clustering algorithm to partition the training samples into K clusters. It then constructs a clustering-based attribute selection measure—namely, the hybrid information gain ratio, based upon which it then trains a C4.5 decision tree. Depending on the differences in the clustering algorithms used, this article constructs two different versions of the HCFC (HCFC-K and HCFC-D) and tests them on eight benchmark datasets in the healthcare and disease diagnosis industries and on 15 datasets from other fields. The results indicate that both versions of the HCFC achieve a comparable or even better classification performance than the other three hybrid and six single models considered. In addition, the HCFC-D has a stronger ability to resist class noise compared with the HCFC-K.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
青云天完成签到,获得积分20
2秒前
3秒前
Joker完成签到,获得积分20
5秒前
李健应助乔钰涵采纳,获得10
6秒前
田様应助乔钰涵采纳,获得10
6秒前
星辰大海应助乔钰涵采纳,获得10
6秒前
顾矜应助乔钰涵采纳,获得10
6秒前
充电宝应助乔钰涵采纳,获得10
6秒前
科研通AI6应助乔钰涵采纳,获得10
6秒前
科研通AI6应助乔钰涵采纳,获得10
6秒前
科研通AI6应助乔钰涵采纳,获得10
6秒前
bkagyin应助yq采纳,获得10
6秒前
ZJFL发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
青云天发布了新的文献求助30
8秒前
STAR完成签到 ,获得积分10
11秒前
书白完成签到,获得积分10
12秒前
科研通AI6应助zpp采纳,获得30
12秒前
12秒前
孟见你发布了新的文献求助10
13秒前
搬砖发布了新的文献求助10
13秒前
13秒前
小二郎应助jnshen采纳,获得10
14秒前
qingmoheng应助djbj2022采纳,获得10
14秒前
善学以致用应助jjjjj采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
Akim应助合适的小海豚采纳,获得10
17秒前
17秒前
火星上的小笼包完成签到,获得积分10
17秒前
18秒前
melody发布了新的文献求助10
19秒前
八九寺完成签到,获得积分10
21秒前
21秒前
22秒前
1444791378发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532391
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576955
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499064
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450284