A Hybrid Classification Framework Based on Clustering

聚类分析 人工智能 计算机科学 机器学习 决策树 水准点(测量) 数据挖掘 班级(哲学) 统计分类 模式识别(心理学) 大地测量学 地理
作者
Jin Xiao,Yuhang Tian,Ling Xie,Xiaoyi Jiang,Jing Huang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2177-2188 被引量:27
标识
DOI:10.1109/tii.2019.2933675
摘要

The traditional supervised classification algorithms tend to focus on uncovering the relationship between sample attributes and the class labels; they seldom consider the potential structural characteristics of the sample space, often leading to unsatisfactory classification results. To improve the performance of classification models, many scholars have sought to construct hybrid models by combining both supervised and unsupervised learning. Although the existing hybrid models have shown significant potential in industrial applications, our experiments indicate that some shortcomings remain. With the aim of overcoming such shortcomings of the existing hybrid models, this article proposes a hybrid classification framework based on clustering (HCFC). First, it applies a clustering algorithm to partition the training samples into K clusters. It then constructs a clustering-based attribute selection measure—namely, the hybrid information gain ratio, based upon which it then trains a C4.5 decision tree. Depending on the differences in the clustering algorithms used, this article constructs two different versions of the HCFC (HCFC-K and HCFC-D) and tests them on eight benchmark datasets in the healthcare and disease diagnosis industries and on 15 datasets from other fields. The results indicate that both versions of the HCFC achieve a comparable or even better classification performance than the other three hybrid and six single models considered. In addition, the HCFC-D has a stronger ability to resist class noise compared with the HCFC-K.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
七七八发布了新的文献求助10
1秒前
范小雨发布了新的文献求助10
1秒前
lj完成签到,获得积分10
1秒前
2秒前
迷人的雪珍完成签到,获得积分10
2秒前
2秒前
2秒前
淞33完成签到 ,获得积分10
3秒前
HYG完成签到,获得积分10
3秒前
思源应助笨笨醉薇采纳,获得10
4秒前
CodeCraft应助Dora采纳,获得10
4秒前
褚华健发布了新的文献求助10
4秒前
aaa完成签到,获得积分10
5秒前
无花果应助asymmetric糖采纳,获得10
6秒前
7秒前
真陈发布了新的文献求助10
8秒前
第七天堂完成签到,获得积分10
8秒前
含蓄安南完成签到 ,获得积分10
9秒前
9秒前
米高乐完成签到 ,获得积分10
9秒前
moooonu完成签到,获得积分10
9秒前
浮游应助wyj采纳,获得10
10秒前
10秒前
临渊之何完成签到,获得积分10
10秒前
开心的芒果完成签到,获得积分10
11秒前
科研通AI6应助笨笨小白熊采纳,获得10
11秒前
高远玺完成签到 ,获得积分10
12秒前
12秒前
Owen应助平常的雁凡采纳,获得10
13秒前
akenosyuri完成签到,获得积分10
13秒前
13秒前
CooLIT发布了新的文献求助10
13秒前
搜集达人应助fmsai采纳,获得10
13秒前
要努力变强完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
喜悦不尤完成签到 ,获得积分10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340292
求助须知:如何正确求助?哪些是违规求助? 4476835
关于积分的说明 13932933
捐赠科研通 4372659
什么是DOI,文献DOI怎么找? 2402478
邀请新用户注册赠送积分活动 1395350
关于科研通互助平台的介绍 1367444