A Hybrid Classification Framework Based on Clustering

聚类分析 人工智能 计算机科学 机器学习 决策树 水准点(测量) 数据挖掘 班级(哲学) 统计分类 模式识别(心理学) 大地测量学 地理
作者
Jin Xiao,Yuhang Tian,Ling Xie,Xiaoyi Jiang,Jing Huang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2177-2188 被引量:27
标识
DOI:10.1109/tii.2019.2933675
摘要

The traditional supervised classification algorithms tend to focus on uncovering the relationship between sample attributes and the class labels; they seldom consider the potential structural characteristics of the sample space, often leading to unsatisfactory classification results. To improve the performance of classification models, many scholars have sought to construct hybrid models by combining both supervised and unsupervised learning. Although the existing hybrid models have shown significant potential in industrial applications, our experiments indicate that some shortcomings remain. With the aim of overcoming such shortcomings of the existing hybrid models, this article proposes a hybrid classification framework based on clustering (HCFC). First, it applies a clustering algorithm to partition the training samples into K clusters. It then constructs a clustering-based attribute selection measure—namely, the hybrid information gain ratio, based upon which it then trains a C4.5 decision tree. Depending on the differences in the clustering algorithms used, this article constructs two different versions of the HCFC (HCFC-K and HCFC-D) and tests them on eight benchmark datasets in the healthcare and disease diagnosis industries and on 15 datasets from other fields. The results indicate that both versions of the HCFC achieve a comparable or even better classification performance than the other three hybrid and six single models considered. In addition, the HCFC-D has a stronger ability to resist class noise compared with the HCFC-K.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
孙燕应助满意的世界采纳,获得50
1秒前
雨竹完成签到,获得积分10
2秒前
Owen应助Ann采纳,获得10
4秒前
spirit发布了新的文献求助10
7秒前
蒋丞发布了新的文献求助10
7秒前
大豆终结者完成签到,获得积分10
8秒前
9秒前
明亮妙菱完成签到,获得积分10
10秒前
11秒前
岳凯发布了新的文献求助10
13秒前
爱撒娇的妙竹完成签到,获得积分10
13秒前
李123发布了新的文献求助10
13秒前
sysxxx完成签到,获得积分10
14秒前
16秒前
16秒前
zg完成签到,获得积分10
17秒前
疼痛诊疗发布了新的文献求助20
17秒前
李健的小迷弟应助猕猴桃采纳,获得10
19秒前
科研通AI2S应助星沉静默采纳,获得10
20秒前
haha完成签到,获得积分10
20秒前
无私追命发布了新的文献求助30
27秒前
29秒前
33秒前
夏三岁关注了科研通微信公众号
33秒前
33秒前
xml完成签到,获得积分10
34秒前
王宇杰发布了新的文献求助10
34秒前
35秒前
炸毛娟发布了新的文献求助10
36秒前
石123完成签到,获得积分10
38秒前
39秒前
罗氏集团发布了新的文献求助10
39秒前
河狸王发布了新的文献求助10
40秒前
ED应助科研通管家采纳,获得10
41秒前
ED应助科研通管家采纳,获得10
41秒前
思源应助科研通管家采纳,获得20
41秒前
隐形曼青应助科研通管家采纳,获得20
41秒前
ED应助科研通管家采纳,获得10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652