达帕格列嗪
糖尿病肾病
氧化应激
内分泌学
医学
内科学
糖尿病
肾病
胰岛素
2型糖尿病
作者
Tadashi Hatanaka,Daisuke Ogawa,Harukuni Tachibana,Jun Eguchi,Tatsuyuki Inoue,Hiroshi Yamada,Kohji Takei,Hirofumi Makino,Jun Wada
摘要
Abstract It is unclear whether the improvement in diabetic nephropathy by sodium glucose cotransporter 2 ( SGLT 2) inhibitors is caused by a direct effect on SGLT 2 or by the improvement in hyperglycemia. Here, we investigated the effect of dapagliflozin on early‐stage diabetic nephropathy using a mouse model of type 1 diabetes and murine proximal tubular epithelial cells. Eight‐week‐old Akita mice were treated with dapagliflozin or insulin for 12 weeks. Body weight, urinary albumin excretion, blood pressure, as well as levels of blood glucose and hemoglobin A1c were measured. Expansion of the mesangial matrix, interstitial fibrosis, and macrophage infiltration in kidneys were evaluated by histology. Oxidative stress and apoptosis were evaluated in kidneys and cultured proximal tubular epithelial cells. Compared with nontreated mice, dapagliflozin and insulin decreased blood glucose and hemoglobin A1c levels equally. Urine volume and water intake increased significantly in the dapagliflozin‐treated group compared with those in the insulin‐treated group, but there were no differences in body weight or blood pressure between the two groups. Macrophage infiltration and fibrosis in renal interstitium improved significantly in the dapagliflozin group compared with the insulin group. Oxidative stress was attenuated by dapagliflozin, and suppression occurred in a dose‐dependent manner. RNA i knockdown of SGLT 2 resulted in reduced oxidative stress. Dapagliflozin ameliorates diabetic nephropathy by suppressing hyperglycemia‐induced oxidative stress in a manner independent of hyperglycemia improvement in Akita mice. Our findings suggest that dapagliflozin may be a novel therapeutic approach for the treatment of diabetic nephropathy.
科研通智能强力驱动
Strongly Powered by AbleSci AI