材料科学
铁电性
薄膜
钙钛矿(结构)
多铁性
正交晶系
应变工程
异质结
铁弹性
基质(水族馆)
凝聚态物理
格子(音乐)
弹性能
纳米尺度
夹紧
极化(电化学)
光电子学
纳米技术
结晶学
晶体结构
电介质
化学
地质学
工程类
物理化学
物理
声学
量子力学
硅
海洋学
机械工程
作者
Chuanshou Wang,Xiaoxing Ke,Jianjun Wang,Renrong Liang,Zhenlin Luo,Yu Tian,Di Yi,Qintong Zhang,Jing Wang,Xiu-Feng Han,Gustaaf Van Tendeloo,Long‐Qing Chen,Ce‐Wen Nan,R. Ramesh,Jinxing Zhang
摘要
Abstract A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi 2 WO 6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi 2 WO 6 film is ten times lower than the one in PbTiO 3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI