Inter- and Intra-Chain Disulfide Bond Prediction Based on Optimal Feature Selection

二硫键 计算机科学 单一债券 生物系统 化学 蛋白质结构预测 算法 蛋白质结构 生物化学 生物 有机化学 烷基
作者
Shen Niu,Tao Huang,Kai‐Yan Feng,Zhisong He,Weiren Cui,Lei Gu,Haipeng Li,Yu‐Dong Cai,Yixue Li
出处
期刊:Protein and Peptide Letters [Bentham Science]
卷期号:20 (3): 324-335 被引量:8
标识
DOI:10.2174/0929866511320030011
摘要

Protein disulfide bond is formed during post-translational modifications, and has been implicated in various physiological and pathological processes. Proper localization of disulfide bonds also facilitates the prediction of protein three-dimensional (3D) structure. However, it is both time-consuming and labor-intensive using conventional experimental approaches to determine disulfide bonds, especially for large-scale data sets. Since there are also some limitations for disulfide bond prediction based on 3D structure features, developing sequence-based, convenient and fast-speed computational methods for both inter- and intra-chain disulfide bond prediction is necessary. In this study, we developed a computational method for both types of disulfide bond prediction based on maximum relevance and minimum redundancy (mRMR) method followed by incremental feature selection (IFS), with nearest neighbor algorithm as its prediction model. Features of sequence conservation, residual disorder, and amino acid factor are used for inter-chain disulfide bond prediction. And in addition to these features, sequential distance between a pair of cysteines is also used for intra-chain disulfide bond prediction. Our approach achieves a prediction accuracy of 0.8702 for inter-chain disulfide bond prediction using 128 features and 0.9219 for intra-chain disulfide bond prediction using 261 features. Analysis of optimal feature set indicated key features and key sites for the disulfide bond formation. Interestingly, comparison of top features between interand intra-chain disulfide bonds revealed the similarities and differences of the mechanisms of forming these two types of disulfide bonds, which might help understand more of the mechanisms and provide clues to further experimental studies in this research field. Keywords: Disulfide bond, inter-chain, intra-chain, incremental feature selection, maximum relevance minimum redundancy, nearest neighbor algorithm, post-translational modifications, incremental feature selection (IFS), cysteine, oxidation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tmobiusx完成签到,获得积分20
1秒前
完美世界应助於伟祺采纳,获得10
6秒前
小于完成签到,获得积分10
8秒前
吃吃货完成签到 ,获得积分10
14秒前
冰姗完成签到,获得积分10
16秒前
咻咻完成签到,获得积分10
17秒前
紫罗兰花海完成签到 ,获得积分10
22秒前
Minjalee完成签到,获得积分0
25秒前
秋子骞完成签到 ,获得积分10
25秒前
25秒前
dong完成签到 ,获得积分10
28秒前
28秒前
满鑫完成签到,获得积分10
33秒前
CH完成签到,获得积分10
35秒前
ZhihaoZhu完成签到 ,获得积分10
41秒前
方方完成签到 ,获得积分10
50秒前
晨曦完成签到,获得积分10
54秒前
阿包完成签到 ,获得积分10
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
跳跃太清完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助於伟祺采纳,获得10
1分钟前
热心市民完成签到 ,获得积分10
1分钟前
ocean应助小阿博采纳,获得10
1分钟前
万能的小叮当完成签到,获得积分0
1分钟前
1分钟前
空洛完成签到 ,获得积分10
1分钟前
小公完成签到,获得积分10
1分钟前
20010103zjl发布了新的文献求助10
1分钟前
超体完成签到 ,获得积分10
1分钟前
1分钟前
琉璃岁月发布了新的文献求助10
1分钟前
粥粥完成签到 ,获得积分10
1分钟前
吴彦祖的通通完成签到 ,获得积分10
1分钟前
应夏山完成签到 ,获得积分10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
无花果应助於伟祺采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311313
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516867
捐赠科研通 2619447
什么是DOI,文献DOI怎么找? 1432303
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856