医学
基因沉默
血管紧张素II
天狼星红
心脏纤维化
下调和上调
内科学
小RNA
体内
纤维化
癌症研究
细胞生物学
生物
病理
基因
生物化学
血压
生物技术
作者
Huaner Ni,Weifeng Li,Ying Zhuge,Shuang Xu,Yue Wang,Yang Chen,Shen Gu,Fang Wang
标识
DOI:10.1016/j.ijcard.2019.04.006
摘要
Background Circular RNAs (circRNAs) are emerging as powerful regulators of cardiac development and disease. Nevertheless, detailed studies describing circRNA-mediated regulation of cardiac fibroblasts (CFs) biology and their role in cardiac fibrosis remain limited. Methods PCR and Sanger sequencing were performed to identify the expression of circHIPK3 in CFs. Edu corporation assays, Transwell migration assays, and immunofluorescence staining assays were conducted to detect the function of circHIPK3 in CFs in vitro. Bioinformatics analysis, dual luciferase activity assays, RNA immunoprecipitation, and fluorescent in situ hybridization experiments were conducted to investigate the mechanism of circHIPK3-mediated cardiac fibrosis. Echocardiographic analysis, Sirius Red staining and immunofluorescence staining were performed to investigate the function of circHIPK3 in angiotensin II (Ang II) induced cardiac fibrosis in vivo. Results circHIPK3 expression markedly increased in CFs and heart tissues after the treatment of Ang II. circHIPK3 silencing attenuates CFs proliferation, migration and the upregulation of a-SMA expression levels induced by Ang II in vitro. circHIPK3 acted as a miR-29b-3p sponge and overexpression of circHIPK3 effectively reverses miR-29b-3p-induced inhibition of CFs proliferation and migration and alters the expression levels of miR-29b-3p targeting genes (a-SMA, COL1A1, COL3A1) in vitro. Combination of circHIPK3 silencing and miR-29b-3p overexpression had a stronger effect on cardiac fibrosis suppression in vivo than did circHIPK3 silencing or miR-29b-3p overexpression alone. Conclusions Our data suggest that circHIPK3 serves as a miR-29b-3p sponge to regulate CF proliferation, migration and development of cardiac fibrosis, revealing a potential new target for the prevention of Ang II-induced cardiac fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI