Reducing Diffusion-Induced Stress of Bilayer Electrode System by Introducing Pre-Strain in Lithium-Ion Battery

材料科学 电极 复合材料 扩散 集电器 变形(气象学) 电解质 压力(语言学) 锂(药物) 离子 化学 热力学 内分泌学 哲学 物理化学 物理 有机化学 医学 语言学
作者
Wenqian Hao,Jiamiao Xie
出处
期刊:Journal of electrochemical energy conversion and storage [ASME International]
卷期号:18 (2) 被引量:119
标识
DOI:10.1115/1.4049238
摘要

Abstract Lithium-ion battery (LIB), as energy storage devices, is widely used in portable electronic devices and have promising applications in electric vehicles. The volume change and large stress can lead to electrode pulverization and the resultant loss of electrical contact from the current collector, which is considered to be one of the main reasons for the capacity degradation of LIB. To reduce diffusion-induced stress of the electrode system during lithium-ion diffusion, a chemo-mechanical coupled theoretical model of bilayer electrode system of electrode layer bonded to the current collector is established. The theoretical results show that diffusion-induced stresses at the electrode–collector interface and maximum tensile stress at the top surface of the electrode layer are alleviated greatly by introducing pre-strain. The effects of pre-strain and lithium-ion concentration on chemo-mechanical coupled behavior of the bilayer electrode system are discussed. In particular, the lithium-ion concentration difference strongly depends on the diffusion thickness and time. The curvature when considering plastic deformation is smaller than that when not considering the plastic deformation. In addition, the effects of plastic deformation of the current collector and diffusion time on biaxial stress distribution are also discussed. The biaxial stress decreases with the increase of pre-strain and decrease of dimensionless time during galvanostatic charging. The biaxial stress when considering plastic deformation is smaller than that when not considering the plastic deformation. The results obtained from this investigation will provide a reference to reduce the diffusion-induced stress and improve the ion diffusion performance of LIB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb完成签到,获得积分10
刚刚
张自信完成签到,获得积分10
1秒前
华仔应助VDC采纳,获得10
1秒前
嘟嘟完成签到,获得积分10
2秒前
卡卡完成签到,获得积分10
2秒前
2秒前
十三发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
甩看文献发布了新的文献求助10
3秒前
wang完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
LONG完成签到,获得积分10
5秒前
5秒前
甜蜜秋蝶完成签到,获得积分10
5秒前
6秒前
TT发布了新的文献求助10
7秒前
啊实打实发布了新的文献求助10
7秒前
yam001发布了新的文献求助30
8秒前
Stanley完成签到,获得积分10
8秒前
LONG发布了新的文献求助10
8秒前
亮亮发布了新的文献求助50
8秒前
LZQ应助细心的小蜜蜂采纳,获得30
9秒前
艺玲发布了新的文献求助10
9秒前
小二郎应助Seven采纳,获得10
9秒前
设计狂魔完成签到,获得积分10
9秒前
9秒前
10秒前
韭黄发布了新的文献求助10
10秒前
科研小白完成签到,获得积分10
10秒前
11秒前
9℃发布了新的文献求助10
11秒前
甩看文献完成签到,获得积分10
11秒前
11秒前
欣喜书桃关注了科研通微信公众号
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762