电磁屏蔽
材料科学
纳米线
光电子学
电磁干扰
干扰(通信)
纳米技术
复合材料
电信
计算机科学
频道(广播)
作者
Xingzhong Zhu,Juan Xu,Feng Qin,Zhiyang Yan,Aoqi Guo,Caixia Kan
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2020-01-01
卷期号:12 (27): 14589-14597
被引量:91
摘要
Transparent electromagnetic interference (EMI) shielding materials with high optical transmittance and outstanding shielding effectiveness (SE) for optoelectronic devices in visual windows are urgently needed. Herein, we demonstrate the preparation of a transparent EMI shielding film based on silver nanowires (Ag NWs) via a facile Mayer-rod coating method. The electrical conductivity and transmittance of Ag NW-based films can be greatly improved through treatment with NaBH4 and the lamination of poly(diallyldimethyl-ammonium chloride). The coverage of the polymer decreases the surface roughness, with no damage on the uniform mesh of the Ag NWs. The Ag NW/PDDA composite films present a sheet resistance of 22 Ω sq-1 at a transmittance of 95.5%, better than that of commercial indium tin oxide (ITO). The excellent optoelectrical performance of the Ag NW/PDDA composite film is further ascertained by fitting the transmittance with the resistance, with a figure of merit of 443. The Ag NW/PDDA composite films in this study exhibit greatly improved stability during 25 °C/65% RH aging for 35 days with the assistance of the coverage layer. Moreover, the EMI SE of the Ag NW/PDDA composite films is 28 dB on average at a transmittance of 91.3%, and continuously increases to 31.3 dB while the optical transmittance is still maintained at 86.8%, which is superior to those of most reported transparent EMI shielding materials. Taken together, the excellent optical transmittance and EMI shielding performance of the Ag NW/PDDA composite film make it an outstanding transparent EMI shielding material in optoelectronic devices, such as aerospace equipment, medical devices, communication facilities, and electronic displays.
科研通智能强力驱动
Strongly Powered by AbleSci AI