Artificial intelligence reconstructs missing climate information

修补 气候学 缺少数据 系列(地层学) 克里金 气候变化 耦合模型比对项目 插值(计算机图形学) 气候模式 计算机科学 气象学 地质学 地理 环境科学 人工智能 图像(数学) 机器学习 古生物学 海洋学
作者
Christopher Kadow,David Hall,Uwe Ulbrich
出处
期刊:Nature Geoscience [Springer Nature]
卷期号:13 (6): 408-413 被引量:170
标识
DOI:10.1038/s41561-020-0582-5
摘要

Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5) experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547 °C) as compared with the original data. These techniques also provide advantages relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4, our method restores a missing spatial pattern of the documented El Nino from July 1877. With respect to the global mean temperature time series, a HadCRUT4 reconstruction by our method points to a cooler nineteenth century, a less apparent hiatus in the twenty-first century, an even warmer 2016 being the warmest year on record and a stronger global trend between 1850 and 2018 relative to previous estimates. We propose image inpainting as an approach to reconstruct missing climate information and thereby reduce uncertainties and biases in climate records. An artificial intelligence-based method may infill gaps in historical temperature data more effectively than conventional techniques. Application of this method reveals a stronger global warming trend between 1850 and 2018 than estimated previously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chenjj发布了新的文献求助10
1秒前
科研通AI2S应助大方雁露采纳,获得10
1秒前
ccooico完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
jianghs发布了新的文献求助30
5秒前
狂野的罡发布了新的文献求助20
5秒前
zjx完成签到,获得积分10
6秒前
辛勤采柳完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
华仔应助kysl采纳,获得10
8秒前
8秒前
lch发布了新的文献求助10
9秒前
艾泽拉斯的囚徒完成签到,获得积分10
9秒前
紫电青霜完成签到 ,获得积分10
10秒前
Tian发布了新的文献求助10
10秒前
SciGPT应助追寻的巧曼采纳,获得10
11秒前
闪闪大米发布了新的文献求助10
11秒前
11秒前
自信寻真发布了新的文献求助10
12秒前
无花果应助科研狗采纳,获得10
13秒前
江恪发布了新的文献求助10
14秒前
15秒前
佳丽完成签到,获得积分10
16秒前
17秒前
烟泽亮完成签到,获得积分10
17秒前
大个应助努力搞科研采纳,获得10
17秒前
炸麻花完成签到,获得积分10
17秒前
QQ发布了新的文献求助10
18秒前
无花果应助11采纳,获得30
18秒前
Linn完成签到 ,获得积分10
19秒前
19秒前
酷波er应助Levy采纳,获得10
19秒前
Dr大壮发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382