Artificial intelligence reconstructs missing climate information

修补 气候学 缺少数据 系列(地层学) 克里金 气候变化 耦合模型比对项目 插值(计算机图形学) 气候模式 计算机科学 气象学 地质学 地理 环境科学 人工智能 图像(数学) 机器学习 古生物学 海洋学
作者
Christopher Kadow,David Hall,Uwe Ulbrich
出处
期刊:Nature Geoscience [Springer Nature]
卷期号:13 (6): 408-413 被引量:170
标识
DOI:10.1038/s41561-020-0582-5
摘要

Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5) experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547 °C) as compared with the original data. These techniques also provide advantages relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4, our method restores a missing spatial pattern of the documented El Nino from July 1877. With respect to the global mean temperature time series, a HadCRUT4 reconstruction by our method points to a cooler nineteenth century, a less apparent hiatus in the twenty-first century, an even warmer 2016 being the warmest year on record and a stronger global trend between 1850 and 2018 relative to previous estimates. We propose image inpainting as an approach to reconstruct missing climate information and thereby reduce uncertainties and biases in climate records. An artificial intelligence-based method may infill gaps in historical temperature data more effectively than conventional techniques. Application of this method reveals a stronger global warming trend between 1850 and 2018 than estimated previously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小二郎应助小鱼采纳,获得10
1秒前
2秒前
micomico发布了新的文献求助10
2秒前
Tengami完成签到 ,获得积分10
3秒前
djbj2022发布了新的文献求助20
3秒前
3秒前
cyj123完成签到,获得积分10
4秒前
风吹麦田应助汤姆采纳,获得50
4秒前
hhh涵完成签到,获得积分10
4秒前
HPP123发布了新的文献求助10
5秒前
脑洞疼应助炙热行云采纳,获得10
6秒前
七七完成签到,获得积分10
6秒前
儒雅青烟发布了新的文献求助10
6秒前
梧桐完成签到 ,获得积分10
6秒前
桂花乌龙完成签到,获得积分10
7秒前
7秒前
科目三应助小田采纳,获得10
7秒前
8秒前
gdada665完成签到,获得积分10
8秒前
烂漫香水完成签到 ,获得积分10
8秒前
hahasun完成签到,获得积分10
8秒前
9秒前
小荣儿完成签到,获得积分10
9秒前
9秒前
ding应助小杨不吃羊采纳,获得10
9秒前
浮游应助2024011023采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
明眸发布了新的文献求助10
11秒前
爱笑的大雁完成签到,获得积分10
11秒前
11秒前
12秒前
wmqwmq发布了新的文献求助10
13秒前
13秒前
micomico完成签到,获得积分10
13秒前
FashionBoy应助威武忆山采纳,获得10
13秒前
bobo发布了新的文献求助10
14秒前
MTXing发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505274
求助须知:如何正确求助?哪些是违规求助? 4600815
关于积分的说明 14474557
捐赠科研通 4534974
什么是DOI,文献DOI怎么找? 2485092
邀请新用户注册赠送积分活动 1468177
关于科研通互助平台的介绍 1440669