Artificial intelligence reconstructs missing climate information

修补 气候学 缺少数据 系列(地层学) 克里金 气候变化 耦合模型比对项目 插值(计算机图形学) 气候模式 计算机科学 气象学 地质学 地理 环境科学 人工智能 图像(数学) 机器学习 古生物学 海洋学
作者
Christopher Kadow,David Hall,Uwe Ulbrich
出处
期刊:Nature Geoscience [Springer Nature]
卷期号:13 (6): 408-413 被引量:170
标识
DOI:10.1038/s41561-020-0582-5
摘要

Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5) experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547 °C) as compared with the original data. These techniques also provide advantages relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4, our method restores a missing spatial pattern of the documented El Nino from July 1877. With respect to the global mean temperature time series, a HadCRUT4 reconstruction by our method points to a cooler nineteenth century, a less apparent hiatus in the twenty-first century, an even warmer 2016 being the warmest year on record and a stronger global trend between 1850 and 2018 relative to previous estimates. We propose image inpainting as an approach to reconstruct missing climate information and thereby reduce uncertainties and biases in climate records. An artificial intelligence-based method may infill gaps in historical temperature data more effectively than conventional techniques. Application of this method reveals a stronger global warming trend between 1850 and 2018 than estimated previously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjjjjj发布了新的文献求助30
1秒前
2秒前
伯赏诗霜发布了新的文献求助10
2秒前
糟糕的鹏飞完成签到 ,获得积分10
3秒前
3秒前
欢呼凡旋完成签到,获得积分10
4秒前
韩邹光完成签到,获得积分10
6秒前
xg发布了新的文献求助10
6秒前
7秒前
dktrrrr完成签到,获得积分10
7秒前
季生完成签到,获得积分10
10秒前
徐徐完成签到,获得积分10
10秒前
11秒前
11秒前
haku完成签到,获得积分10
13秒前
可爱的函函应助laodie采纳,获得10
15秒前
Singularity应助忆楠采纳,获得10
16秒前
17秒前
请叫我风吹麦浪应助PengHu采纳,获得30
18秒前
jjjjjj完成签到,获得积分10
18秒前
凝子老师发布了新的文献求助10
20秒前
20秒前
橙子fy16_发布了新的文献求助10
22秒前
cookie完成签到,获得积分10
22秒前
柒柒的小熊完成签到,获得积分10
23秒前
23秒前
Hello应助萌之痴痴采纳,获得10
24秒前
hahaer完成签到,获得积分10
26秒前
领导范儿应助失眠虔纹采纳,获得10
27秒前
28秒前
Owen应助凝子老师采纳,获得10
31秒前
31秒前
南宫炽滔完成签到 ,获得积分10
33秒前
33秒前
丘比特应助飞羽采纳,获得10
34秒前
沙拉发布了新的文献求助10
34秒前
35秒前
36秒前
椰子糖完成签到 ,获得积分10
37秒前
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849