材料科学
冶金
氧化物
应力腐蚀开裂
腐蚀
压水堆
溶解
包层(金属加工)
开裂
极限抗拉强度
铁氧体(磁铁)
复合材料
化学
物理
物理化学
核物理学
作者
Tongming Cui,Qi Xiong,Jiarong Ma,Kun Zhang,Zhanpeng Lu,Junjie Chen,Yibo Jia,Hui Zheng,S. Yang,Zhimin Zhong,Sergio Lozano-Pérez,Tetsuo Shoji
出处
期刊:Corrosion
[NACE International]
日期:2021-05-15
卷期号:77 (8): 878-895
被引量:10
摘要
Exposure and slow strain rate tensile tests were conducted in a simulated pressurized water reactor (PWR) primary water to investigate the oxidation resistance and stress corrosion cracking (SCC) susceptibility of 308L and 309L stainless steel (SS) cladding layers. A double-layer structure oxide layer grown on 308L SS and 309L SS contained the Cr-enriched nanocrystalline internal layer and the Fe-enriched spinel oxide in the external layer. Ni-enrichment at the matrix/oxide boundary was observed. The internal oxide film on 309L SS was thicker and had a lower Cr content than that on 308L SS. Preferential dissolution of inclusions led to pits on 308L SS and 309L SS surfaces during the exposure tests. More inclusions in 309L would decrease its SCC resistance due to the pits’ ability to act as the SCC initiation site. 308L SS had a lower susceptibility to SCC than 309L SS in PWR primary water. Lower ferrite content and higher strength/hardness reduced the oxidation and SCC resistance of 309L SS cladding. The effect of ferrite on oxidation and SCC of the SS claddings is discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI