Reduced graphene oxide-supported hollow Co3O4@N-doped porous carbon as peroxymonosulfate activator for sulfamethoxazole degradation

石墨烯 催化作用 氧化物 双金属片 化学 电子转移 化学工程 协同催化 比表面积 无机化学 光化学 有机化学 工程类
作者
Yanling Chen,Xue Bai,Yetong Ji,Ting Shen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:430: 132951-132951 被引量:103
标识
DOI:10.1016/j.cej.2021.132951
摘要

A novel reduced graphene oxide-supported hollow Co3O4@N-doped porous carbon (Co3O4@NPC/rGO) composite was synthesized via self-assembly and pyrolysis-oxidation using bimetallic zeolite imidazolate frameworks and graphene oxide as precursors. The as-obtained composite exhibited superior performance on peroxymonosulfate (PMS) activation over a wide pH range. Complete removal of sulfamethoxazole (SMX, 25 mg·L−1) was achieved within 5 min and the reaction rate constant was higher than those of the most reported heterogeneous catalyst/PMS systems for SMX degradation. It was demonstrated that both radical pathways (SO4−, OH, and O2−) and non-radical pathways (1O2 and direct electron transfer) were involved in the SMX degradation. Significantly, the contribution ratio of each reactive oxidative species (ROS) in the bulk solution or on the catalyst surface was differentiated and calculated for the first time. SO4− both in the bulk solution and on the catalyst surface as well as the 1O2 in the bulk solution were the dominant ROS. The possible degradation mechanism of SMX by Co3O4@NPC/rGO/PMS system was proposed. Co active sites with high activity, the electron-rich ketonic group and the nitrogen doping sites within Co3O4@NPC/rGO contributed to the excellent catalytic activity. The ecotoxicity of SMX and its intermediates was investigated. Besides, the reusability, stability and application potential in actual waterbodies of Co3O4@NPC/rGO were evaluated. Overall, this work expands the environmental application of metal–organic frameworks (MOFs)-derived hollow nanomaterials and provides a promising heterogeneous catalyst for the elimination of refractory contaminants by sulfate radical-based advanced oxidation processes (SR-AOPs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助风中的妖妖采纳,获得10
刚刚
万嘉俊完成签到,获得积分10
刚刚
科研通AI5应助深情的砖头采纳,获得10
刚刚
刚刚
刚刚
夏天来了发布了新的文献求助10
刚刚
美好斓发布了新的文献求助50
1秒前
苏卿应助超级气泡水采纳,获得10
1秒前
越过山丘应助超级气泡水采纳,获得10
1秒前
科研通AI5应助超级气泡水采纳,获得10
1秒前
科研通AI5应助超级气泡水采纳,获得10
1秒前
nannan完成签到 ,获得积分10
1秒前
长江长发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
94关注了科研通微信公众号
2秒前
phenory发布了新的文献求助10
3秒前
沉默寻凝完成签到,获得积分10
3秒前
汎影发布了新的文献求助10
3秒前
老迟到的鬼神完成签到 ,获得积分10
4秒前
在水一方应助牛牛在搬砖采纳,获得10
4秒前
斯文败类应助Jiayi采纳,获得10
4秒前
小米粥24完成签到,获得积分10
5秒前
小二郎应助张茜采纳,获得10
5秒前
5秒前
6秒前
CodeCraft应助sss312采纳,获得10
6秒前
Mm完成签到,获得积分10
6秒前
kingwill应助sci梦采纳,获得20
6秒前
Wenpandaen发布了新的文献求助10
6秒前
科研通AI5应助lili采纳,获得80
7秒前
爱笑宛亦完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI5应助yangyajie采纳,获得10
8秒前
8秒前
yueLu发布了新的文献求助20
8秒前
向前跑发布了新的文献求助10
8秒前
Owen应助怕黑的思雁采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558928
求助须知:如何正确求助?哪些是违规求助? 3133623
关于积分的说明 9403366
捐赠科研通 2833721
什么是DOI,文献DOI怎么找? 1557654
邀请新用户注册赠送积分活动 727595
科研通“疑难数据库(出版商)”最低求助积分说明 716366